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In this paper, the notions of 𝐿−fuzzy prime ideals and maximal 𝐿−fuzzy ideals of universal algebras are introduced by applying the
general theory of algebraic fuzzy systems.

1. Introduction

The commutator (or the product) of ideals 𝐼 and 𝐽 of a ring𝑅, written as 𝐼𝐽, is the ideal of 𝑅 generated by all products 𝑖𝑗
and 𝑗𝑖, with 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽; i.e.,

𝐼𝐽 = {𝑥 ∈ 𝑅 : 𝑥 = Σ𝑛𝑖=1𝑦𝑖𝑧𝑖, 𝑦𝑖 ∈ 𝐼, 𝑧𝑖 ∈ 𝐽} . (1)

In 1984, H. P. Gumm and A. Ursini [1] have studied the
commutator (or the product) of ideals in a more general con-
text. They have defined and characterized the commutator of
ideals in universal algebras by the use of commutator terms.
Later on, A. Ursini [2] applied this product to study prime
ideals of universal algebras. P. Agliano [3] then studied the
prime spectrum of universal algebras.

The concept of fuzzy sets was first introduced by Zadeh
[4] and this concept was adapted by Rosenfeld [5] to define
fuzzy subgroups. Since then, many authors have been study-
ing fuzzy subalgebras of several algebraic structures (see [6–
9]). As suggested byGougen [10], the unit interval [0, 1] is not
sufficient to take the truth values of general fuzzy statements.
U. M. Swamy and D. V. Raju [11, 12] studied the general
theory of algebraic fuzzy systems by introducing the notion
of a fuzzy L− subset of a set 𝑋 corresponding to a given
class L of subsets of 𝑋 having truth values in a complete
lattice satisfying the infinite meet distributive law. Swamy
and Swamy [13] defined the commutator (or the product) of𝐿−fuzzy ideals 𝜇 and 𝜎 of a ring 𝑅 as follows:

[𝜇, 𝜎] (𝑥) = ⋁{ 𝑛⋀
𝑖=1

(𝜇 (𝑦𝑖) ∧ 𝜎 (𝑧𝑖)) : 𝑥 = Σ𝑛𝑖=1𝑦𝑖𝑧𝑖} (2)

for all 𝑥 ∈ 𝑅. They have used this commutator to define𝐿−fuzzy prime ideals of rings.
In [14], we have studied 𝐿−fuzzy ideals in universal

algebras having a definable constant denoted by 0, where𝐿 is a complete distributive lattice satisfying the infinite
meet distributive law. We gave a necessary and sufficient
condition for a class of algebras to be ideal-determined. In the
present paper, we define the commutator of 𝐿−fuzzy ideals
in universal algebras and investigate some of its properties.
Moreover, we study 𝐿−fuzzy prime ideals and maximal𝐿−fuzzy ideals in universal algebras as a generalization of𝐿−fuzzy prime ideals in those well-known structures: in
semigroups [15], in rings [13], in semirings [16], in ternary
semirings [17], in Γ-rings [18], in modules [19], in lattices [9],
and in other algebraic structures.

2. Preliminaries

This section contains some definitions and results which will
be used in this paper. For those elementary concepts on
universal algebras we refer to [20, 21]. Throughout this paper𝐴 ∈ K, whereK is a class of algebras of a fixed type Ω, and
we assume that there is an equationally definable constant in
all algebras of K denoted by 0. For a positive integer 𝑛, we
write 󳨀→𝑎 to denote the 𝑛−tuple ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ ∈ 𝐴𝑛.
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Definition 1 ([1]). A term 𝑃(󳨀→𝑥, 󳨀→𝑦) is said to be an ideal term
in 󳨀→𝑦 if and only if 𝑃(󳨀→𝑥, 󳨀→0 ) = 0.
Definition 2 ([1]). A nonempty subset 𝐼 of𝐴 is called an ideal
of 𝐴 if and only if 𝑃(󳨀→𝑎 , 󳨀→𝑏 ) ∈ 𝐼 for all 󳨀→𝑎 ∈ 𝐴𝑛, 󳨀→𝑏 ∈ 𝐼𝑚 and
any ideal term 𝑃(󳨀→𝑥, 󳨀→𝑦) in 󳨀→𝑦 .

We denote the class of all ideals of 𝐴, byI(𝐴).
Definition 3 ([1]). A class K of algebras is called ideal-
determined if every ideal 𝐼 is the zero congruence class of a
unique congruence relation denoted by 𝐼𝛿. In this case the
map 𝐼 󳨃󳨀→ 𝐼𝛿 defines an isomorphism between the lattice of
ideals and congruences on 𝐴.
Definition 4 ([1, 2]). A term 𝑡(󳨀→𝑥, 󳨀→𝑦, 󳨀→𝑧 ) is said to be a
commutator term in 󳨀→𝑦, 󳨀→𝑧 if and only if it is an ideal term
in 󳨀→𝑦 and an ideal term in 󳨀→𝑧 .
Definition 5 ([1]). In an ideal-determined variety, the com-
mutator [𝐼, 𝐽] of ideals 𝐼 and 𝐽 is the zero congruence class of
the commutator congruence [𝐼𝛿, 𝐽𝛿].

It is characterized in [1] as follows.

Theorem 6 ([1, 2]). In an ideal-determined variety,

[𝐼, 𝐽] = {𝑡 (󳨀→𝑎 , 󳨀→𝑖 , 󳨀→𝑗 ) : 󳨀→𝑎 ∈ 𝐴𝑛, 󳨀→𝑖 ∈ 𝐼𝑚 𝑎𝑛𝑑 󳨀→𝑗
∈ 𝐽𝑘 𝑤ℎ𝑒𝑟𝑒 𝑡 (󳨀→𝑥, 󳨀→𝑦,
󳨀→𝑧) 𝑖s 𝑎 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑜𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 󳨀→𝑦, 󳨀→𝑧} .

(3)

For subsets 𝐻,𝐺 of 𝐴, [𝐻, 𝐺] denotes the product[⟨𝐻⟩, ⟨𝐺⟩]. In particular, for 𝑎, 𝑏 ∈ 𝐴, [⟨𝑎⟩, ⟨𝑏⟩] is denoted
by [𝑎, 𝑏].
Definition 7 ([2]). A proper ideal 𝑃 of𝐴 is called prime if and
only if for all 𝐼, 𝐽 ∈ I(𝐴)

[𝐼, 𝐽] ⊆ 𝑃 󳨐⇒ 𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 ⊆ 𝑃 𝑜𝑟 𝐽 ⊆ 𝑃. (4)

Theorem 8 ([2]). A proper ideal 𝑃 of 𝐴 is prime if and only if

[𝑎, 𝑏] ⊆ 𝑃 󳨐⇒ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 ∈ 𝑃 𝑜𝑟 𝑏 ∈ P (5)

for all 𝑎, 𝑏 ∈ 𝐴.
Throughout this paper 𝐿 = (𝐿, ∧, ∨, 0, 1) is a complete

Brouwerian lattice; i.e., 𝐿 is a complete lattice satisfying the
infinite meet distributive law. By an 𝐿−fuzzy subset of 𝐴, we
mean a mapping 𝜇 : 𝐴 󳨀→ 𝐿. For each 𝛼 ∈ 𝐿, the 𝛼−level set
of 𝜇 denoted by 𝜇𝛼 is a subset of 𝐴 given by the following.

𝜇𝛼 = {𝑥 ∈ 𝐴 : 𝛼 ≤ 𝜇 (𝑥)} (6)

For 𝐿−fuzzy subsets 𝜇 and ] of 𝐴, we write 𝜇 ≤ ] to mean𝜇(𝑥) ≤ ](𝑥) in the ordering of 𝐿.

Definition 9 ([22]). For each 𝑥 ∈ 𝐴 and 0 ̸= 𝛼 in 𝐿, the𝐿−fuzzy subset 𝑥𝛼 of 𝐴 given by

𝑥𝛼 (𝑧) = {{{
𝛼 𝑖𝑓 𝑧 = 𝑥
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (7)

is called the 𝐿−fuzzy point of 𝐴. In this case 𝑥 is called the
support of 𝑥𝛼 and 𝛼 is its value.

For an 𝐿−fuzzy subset 𝜇 of 𝐴 and an 𝐿−fuzzy point 𝑥𝛼 of𝐴, we write 𝑥𝛼 ∈ 𝜇 whenever 𝜇(𝑥) ≥ 𝛼.
Definition 10 ([14]). An 𝐿−fuzzy subset 𝜇 of𝐴 is said to be an𝐿−fuzzy ideal of 𝐴 if and only if the following conditions are
satisfied:

(1) 𝜇(0) = 1, and
(2) If 𝑃(󳨀→𝑥, 󳨀→𝑦) is an ideal term in 󳨀→𝑦 and 󳨀→𝑎 ∈ 𝐴𝑛, 󳨀→𝑏 ∈ 𝐴𝑚;

then

𝜇 (𝑃 (󳨀→𝑎 , 󳨀→𝑏 )) ≥ 𝜇𝑚 (󳨀→𝑏 ) . (8)

Note that an 𝐿−fuzzy subset 𝜇 of 𝐴 satisfying the two
conditions in the above definition can be regarded as a
normal 𝐿−fuzzy ideal in the sense of Jun et al. [23].

Theorem 11 ([14]). A class K of algebras is ideal-determined
if and only if every 𝐿−fuzzy ideal 𝜇 is the zero fuzzy congruence
class of a unique 𝐿−fuzzy congruence relation denoted by Θ𝜇.
3. The Commutator of 𝐿−Fuzzy Ideals
In this section, we define the commutator (or the product) of𝐿−fuzzy ideals in universal algebras. It is observed in [14] that
an 𝐿−fuzzy subset 𝜇 of 𝐴 is an 𝐿−fuzzy ideal of 𝐴 if and only
if every 𝛼−level set of 𝜇 is an ideal of 𝐴. Here we define the
commutator of 𝐿−fuzzy ideals using their level ideals.
Definition 12. The commutator of 𝐿−fuzzy ideals 𝜇 and 𝜎 of𝐴 denoted by [𝜇, 𝜎] is an 𝐿−fuzzy subset of 𝐴 defined by

[𝜇, 𝜎] (𝑥) = ⋁{𝛼 ∧ 𝛽 : 𝛼, 𝛽 ∈ 𝐿, 𝑥 ∈ [𝜇𝛼, 𝜎𝛽]} (9)

for all 𝑥 ∈ 𝐴.
For each 𝛼, 𝛽, and 𝜆 in 𝐿with 𝜆 = 𝛼∧𝛽, the following can

be verified.

𝑥 ∈ [𝜇𝛼, 𝜎𝛽] 󳨐⇒ 𝑥 ∈ [𝜇𝜆, 𝜎𝜆] (10)

So the commutator of 𝐿−fuzzy ideals can be equivalently
redefined as follows.

[𝜇, 𝜎] (𝑥) = ⋁{𝜆 ∈ 𝐿 : 𝑥 ∈ [𝜇𝜆, 𝜎𝜆]} (11)

The following lemmas can be verified easily.

Lemma 13. For any 𝐿−fuzzy ideals 𝜇 and 𝜎 of 𝐴, [𝜇, 𝜎] is an𝐿−fuzzy ideal of 𝐴 such that

[𝜇, 𝜎] ≤ 𝜇 ∩ 𝜎. (12)
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Lemma 14. For any ideals 𝐼 and 𝐽 of 𝐴
𝜒[𝐼,𝐽] = [𝜒𝐼, 𝜒𝐽] . (13)

In the following theorem, we give an algebraic character-
ization for the commutator of 𝐿−fuzzy ideals.
Theorem 15. For each 𝑥 ∈ 𝐴 and 𝐿−fuzzy ideals 𝜇 and 𝜎 of 𝐴

[𝜇, 𝜎] (𝑥) = ⋁{𝜇𝑚 (󳨀→𝑏 ) ∧ 𝜎𝑘 (󳨀→𝑐 ) : 𝑥 = 𝑡 (󳨀→𝑎 , 󳨀→𝑏 , 󳨀→𝑐 ) , 𝑤ℎ𝑒𝑟𝑒 󳨀→𝑎 ∈ 𝐴𝑛, 󳨀→𝑏 ∈ 𝐴𝑚, 󳨀→𝑐
∈ 𝐴𝑘, 𝑎𝑛𝑑 𝑡 (󳨀→𝑥, 󳨀→𝑦, 󳨀→𝑧) 𝑖𝑠 𝑎 𝑐o𝑚𝑚𝑢𝑡𝑎𝑡𝑜𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 󳨀→𝑦, 󳨀→𝑧} . (14)

Proof. For each 𝑥 ∈ 𝐴, let us define two sets 𝐻𝑥 and 𝐺𝑥 as
follows.

𝐻𝑥 = {𝜇𝑚 (󳨀→𝑏 ) ∧ 𝜎𝑘 (󳨀→𝑐 ) : 𝑥 = 𝑡 (󳨀→𝑎 , 󳨀→𝑏 , 󳨀→𝑐 ) ,
𝑤ℎ𝑒𝑟𝑒 󳨀→𝑎 ∈ 𝐴𝑛, 󳨀→𝑏 ∈ 𝐴𝑚, 󳨀→𝑐 ∈ 𝐴𝑘 𝑎𝑛𝑑 𝑡 (󳨀→𝑥, 󳨀→𝑦,
󳨀→𝑧) 𝑖𝑠 𝑎 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑜𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 󳨀→𝑦, 󳨀→𝑧}

𝐺𝑥 = {𝛼 ∈ 𝐿 : 𝑥 ∈ [𝜇𝛼, 𝜎𝛼]}

(15)

Clearly both 𝐻𝑥 and 𝐺𝑥 are subsets of 𝐿. Our claim is to see
the following.

⋁{𝛼 : 𝛼 ∈ 𝐻𝑥} = ⋁{𝛼 : 𝛼 ∈ 𝐺𝑥} (16)
One way of proof is to show that 𝐻𝑥 ⊆ 𝐺𝑥. 𝛼 ∈ 𝐻𝑥 implies
that 𝛼 = 𝜇𝑚(󳨀→𝑏 ) ∧ 𝜎𝑘(󳨀→𝑐 ), where 𝑥 = 𝑡(󳨀→𝑎 , 󳨀→𝑏 , 󳨀→𝑐 ) for some󳨀→𝑎 ∈ 𝐴𝑛, 󳨀→𝑏 ∈ 𝐴𝑚, 󳨀→𝑐 ∈ 𝐴𝑘, and some commutator term𝑡(󳨀→𝑥, 󳨀→𝑦, 󳨀→𝑧 ) in 󳨀→𝑦, 󳨀→𝑧 . That is,

󳨀→𝑏 ∈ (𝜇𝛼)𝑚 and 󳨀→𝑐 ∈ (𝜎𝛼)𝑘 so that𝑥 ∈ [𝜇𝛼, 𝜎𝛼]. Then 𝛼 ∈ 𝐺𝑥 and hence𝐻𝑥 ⊆ 𝐺𝑥. Another way
is to prove that, for each 𝛼 ∈ 𝐺𝑥, there exists 𝛽 ∈ 𝐻𝑥 such that𝛼 ≤ 𝛽. If 𝛼 ∈ 𝐺𝑥, then 𝑥 ∈ [𝜇𝛼, 𝜎𝛼] so that 𝑥 = 𝑡(󳨀→𝑎 , 󳨀→𝑏 , 󳨀→𝑐 ) for
some 󳨀→𝑎 ∈ 𝐴𝑛, 󳨀→𝑏 ∈ (𝜇𝛼)𝑚, and 󳨀→𝑐 ∈ (𝜎𝛼)𝑘, where 𝑡(󳨀→𝑥, 󳨀→𝑦, 󳨀→𝑧 )
is a commutator term in 󳨀→𝑦, 󳨀→𝑧 . That is, 𝜇𝑚(󳨀→𝑏 ) ≥ 𝛼 and
𝜎𝑘(󳨀→𝑐 ) ≥ 𝛼. If we put 𝛽 = 𝜇𝑚(󳨀→𝑏 ) ∧ 𝜎𝑘(󳨀→𝑐 ), then 𝛽 ≥ 𝛼 and𝛽 ∈ 𝐻𝑥. This completes the proof.

Notation 16. We write 𝐹 ⊂⊂ 𝐴, to say that 𝐹 is a finite subset
of 𝐴.
Theorem 17. For each 𝑥 ∈ 𝐴 and 𝐿−fuzzy ideals 𝜇 and 𝜎 of 𝐴

[𝜇, 𝜎] (𝑥) = ⋁{ ⋀
𝑎∈𝐸,𝑏∈𝐹

(𝜇 (𝑎) ∧ 𝜎 (𝑏)) : 𝑥

∈ [𝐸, 𝐹] , 𝐸, 𝐹 ⊂⊂ 𝐴} .
(17)

Proof. For each 𝑥 ∈ 𝐴, let us take the set 𝐺𝑥 as inTheorem 15
and define a set𝐻𝑥 as follows.
𝐻𝑥
= { ⋀
𝑎∈𝐸,𝑏∈𝐹

(𝜇 (𝑎) ∧ 𝜎 (𝑏)) : 𝑥 ∈ [𝐸, 𝐹] , 𝐸, 𝐹 ⊂⊂ 𝐴} (18)

Our claim is to show the following.

⋁{𝛼 : 𝛼 ∈ 𝐻𝑥} = ⋁{𝛼 : 𝛼 ∈ 𝐺𝑥} (19)

One way of proof is to show that 𝐻𝑥 ⊆ 𝐺𝑥. If 𝛼 ∈ 𝐻𝑥, then
𝛼 = ⋀
𝑎∈𝐸,𝑏∈𝐹

(𝜇 (𝑎) ∧ 𝜎 (𝑏)) (20)

where𝐸 and𝐹 are finite subsets of𝐴 such that𝑥 ∈ [𝐸, 𝐹].That
is, 𝜇(𝑎)∧𝜎(𝑏) ≥ 𝛼 for all 𝑎 ∈ 𝐸 and all 𝑏 ∈ 𝐹.Then𝐸 ⊆ 𝜇𝛼 and𝐹 ⊆ 𝜎𝛼 so that [𝐸, 𝐹] ⊆ [𝜇𝛼, 𝜎𝛼]. Thus 𝑥 ∈ [𝜇𝛼, 𝜎𝛼] and hence𝛼 ∈ 𝐺𝑥. Therefore𝐻𝑥 ⊆ 𝐺𝑥. Another way is to prove that, for
each 𝛼 ∈ 𝐺𝑥, there exists 𝛽 ∈ 𝐻𝑥 such that 𝛼 ≤ 𝛽. If 𝛼 ∈ 𝐺𝑥,
then 𝑥 ∈ [𝜇𝛼, 𝜎𝛼]. Therefore, 𝑥 = 𝑡(󳨀→𝑎 , 󳨀→𝑏 , 󳨀→𝑐 ) for some 󳨀→𝑎 ∈
𝐴𝑛, 󳨀→𝑏 = ⟨𝑏1, 𝑏2, . . . , 𝑏𝑚⟩ ∈ (𝜇𝛼)𝑚, and 󳨀→𝑐 = ⟨𝑐1, 𝑐2, . . . , 𝑐𝑘⟩ ∈(𝜎𝛼)𝑘, where 𝑡(󳨀→𝑥, 󳨀→𝑦, 󳨀→𝑧 ) is a commutator term in 󳨀→𝑦, 󳨀→𝑧 . That
is,

𝜇𝑚 (󳨀→𝑏 ) = 𝜇 (𝑏1) ∧ ⋅ ⋅ ⋅ ∧ 𝜇 (𝑏𝑚) ≥ 𝛼 (21)

and

𝜎𝑘 (󳨀→𝑐 ) = 𝜎 (𝑐1) ∧ ⋅ ⋅ ⋅ ∧ 𝜎 (𝑐𝑚) ≥ 𝛼. (22)

If we put 𝐸 = {𝑏1, 𝑏2, . . . , 𝑏𝑚} and 𝐹 = {𝑐1, 𝑐2, . . . , 𝑐𝑘}, then𝐸 and 𝐹 are both finite subsets of 𝐴 such that 𝑥 ∈ [𝐸, 𝐹].
Moreover, if we take

𝛽 = ⋀
𝑎∈𝐸,𝑏∈𝐹

(𝜇 (𝑎) ∧ 𝜎 (𝑏)) (23)

then 𝛽 ∈ 𝐻𝑥 such that 𝛼 ≤ 𝛽. This completes the proof.

Definition 18. For each 𝜇 ∈ FI(𝐴), we define by induction
𝜇(1) = 𝜇 = 𝜇1;
𝜇(𝑛+1) = [𝜇(𝑛), 𝜇(𝑛)]

𝑎𝑛𝑑 𝜇𝑛+1 = [𝜇(𝑛), 𝜇] .
(24)

An 𝐿−fuzzy ideal 𝜇 of 𝐴 will be called fuzzy nilpotent (resp.,
fuzzy solvable) if𝜇𝑛 = 𝜒(0) (resp.,𝜇(𝑛) = 𝜒(0)) for some 𝑛 ∈ 𝑍+.
Lemma 19. An 𝐿−fuzzy subset 𝜇 of 𝐴 is 𝐿−fuzzy nilpotent
(resp., 𝐿−fuzzy solvable) if and only if 𝜇𝛼 is nilpotent (resp.,
solvable) for all 𝛼 ∈ 𝐿.
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4. 𝐿−Fuzzy Prime Ideals

In this section we define 𝐿−fuzzy prime ideals and investigate
some of their properties.

Definition 20. A nonconstant 𝐿−fuzzy ideal 𝜇 of 𝐴 is called
an 𝐿−fuzzy prime ideal if and only if

[], 𝜎] ≤ 𝜇 󳨐⇒ 𝑒𝑖𝑡ℎ𝑒𝑟 ] ≤ 𝜇 𝑜𝑟 𝜎 ≤ 𝜇 (25)

for all ], 𝜎 ∈ FI(𝐴).
Notation 21. For 𝐿−fuzzy points 𝑥𝛼 and 𝑦𝛽 of 𝐴, we denote[⟨𝑥𝛼⟩, ⟨𝑦𝛽⟩] by [𝑥𝛼, 𝑦𝛽].

In the following theorem we characterize 𝐿−fuzzy prime
ideals using 𝐿−fuzzy points.
Theorem 22. A nonconstant 𝐿−fuzzy ideal 𝜇 of 𝐴 is 𝐿−fuzzy
prime if and only if for any 𝐿−fuzzy points 𝑥𝛼 and 𝑦𝛽 of 𝐴

[𝑥𝛼, 𝑦𝛽] ≤ 𝜇 𝑒𝑖𝑡ℎ𝑒𝑟 𝑥𝛼 ∈ 𝜇 𝑜𝑟 𝑦𝛽 ∈ 𝜇. (26)

Proof. Suppose that 𝜇 satisfies the condition:
[𝑥𝛼, 𝑦𝛽] ≤ 𝜇 󳨐⇒ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑥𝛼 ∈ 𝜇 𝑜𝑟 𝑦𝛽 ∈ 𝜇 (27)

for all 𝐿−fuzzy points 𝑥𝛼 and 𝑦𝛽 of𝐴. Let 𝜎 and 𝜃 be 𝐿−fuzzy
ideals of𝐴 such that [𝜎, 𝜃] ≤ 𝜇. Suppose if possible that 𝜎 ≰ 𝜇
and 𝜃 ≰ 𝜇. Then there exist 𝑥, 𝑦 ∈ 𝐴 such that 𝜎(𝑥) ≰ 𝜇(𝑥)
and 𝜃(𝑦) ≰ 𝜇(𝑦). If we put 𝛼 = 𝜎(𝑥) and 𝛽 = 𝜃(𝑦), then 𝑥𝛼
and 𝑦𝛽 are fuzzy points of 𝐴 such that 𝑥𝛼 ∈ 𝜎, but 𝑥𝛼 ∉ 𝜇,
and 𝑦𝛽 ∈ 𝜃, but 𝑦𝛽 ∉ 𝜇, so that [𝑥𝛼, 𝑦𝛽] ≤ [𝜎, 𝜃] ≤ 𝜇, but𝑥𝛼 ∉ 𝜇 and 𝑦𝛽 ∉ 𝜇. This contradicts our hypothesis. Thus
either 𝜎 ≤ 𝜇 or 𝜃 ≤ 𝜇. Therefore 𝜇 is prime. The other way is
clear.

Theorem 23. A nonconstant 𝐿−fuzzy ideal 𝜇 is an 𝐿−fuzzy
prime ideal if and only if 𝐼𝑚𝑔(𝜇) = {1, 𝛼}, where 𝛼 is a prime
element in 𝐿 and the set 𝜇∗ = {𝑥 ∈ 𝐴 : 𝜇(𝑥) = 1} is a prime
ideal of 𝐴.
Proof. Suppose that 𝜇 is a prime 𝐿−fuzzy ideal. Clearly 1 ∈𝐼𝑚𝑔(𝜇), and since 𝜇 is nonconstant, there is some 𝑎 ∈ 𝐴 such
that 𝜇(𝑎) < 1. We show that 𝜇(𝑎) = 𝜇(𝑏) for all 𝑎, 𝑏 ∈ 𝐴 − 𝜇∗.
Let 𝑎, 𝑏 ∈ 𝐴 such that 𝜇(𝑎) < 1 and 𝜇(𝑏) < 1. Let us define𝐿−fuzzy subsets 𝜎 and 𝜃 of 𝐴 as follows:

𝜎 (𝑥) = {{{
1 𝑖𝑓 𝑥 ∈ ⟨𝑎⟩
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (28)

and

𝜃 (𝑥) = {{{
1 𝑖𝑓 𝑥 = 0
𝜇 (𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (29)

for all 𝑥 ∈ 𝐴. Then it can be verified that both 𝜎 and 𝜃 are𝐿−fuzzy ideals of 𝐴. Moreover, for each 𝑥 ∈ 𝐴 we have

[𝜎, 𝜃] (𝑥) =
{{{{{{{{{

1 𝑖𝑓 𝑥 = 0
𝜇 (𝑎) 𝑖𝑓 𝑥 ∈ ⟨𝑎⟩ − {0}
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(30)

so that [𝜎, 𝜃] ≤ 𝜇, but 𝜎(𝑎) = 1 > 𝜇(𝑏), so 𝜎 ≰ 𝜇. Since 𝜇 is𝐿−fuzzy prime, we get 𝜃 ≤ 𝜇, which gives 𝜃(𝑏) ≤ 𝜇(𝑏); that is,𝜇(𝑎) ≤ 𝜇(𝑏). Similarly it can be verified that 𝜇(𝑏) ≤ 𝜇(𝑎) so
that 𝜇(𝑎) = 𝜇(𝑏) for all 𝑎, 𝑏 ∈ 𝐴−𝜇∗.Thus 𝐼𝑚𝑔(𝜇) = {1, 𝛼} for
some 𝛼 ̸= 1 in 𝐿. It remains to show that 𝛼 is a prime element
in 𝐿. Let 𝛽, 𝛾 ∈ 𝐿 such that 𝛽 ∧ 𝛾 ≤ 𝛼. Consider 𝐿−fuzzy
subsets 𝛽 and 𝛾 of 𝐴 defined by

𝛽 (𝑥) = {{{
1 𝑖𝑓 𝑥 = 0
𝛽 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (31)

and

𝛾 (𝑥) = {{{
1 𝑖𝑓 𝑥 = 0
𝛾 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (32)

for all 𝑥 ∈ 𝐴. Then 𝛽 and 𝛾 are both 𝐿−fuzzy ideals of 𝐴 such
that [𝛽, 𝛾] ≤ 𝜇. Since𝜇 is𝐿−fuzzy prime, either𝛽 ≤ 𝜇 or 𝛾 ≤ 𝜇
so that either 𝛽 ≤ 𝛼 or 𝛾 ≤ 𝛼. Hence 𝛼 is prime in 𝐿. Next we
show that the level ideal 𝜇∗ is prime. Put 𝑃 = 𝜇∗ and let 𝐼 and𝐽 be ideas of 𝐴 such that [𝐼, 𝐽] ⊆ 𝑃. Then 𝜒[𝐼,𝐽] ≤ 𝜒𝑃 ≤ 𝜇.
That is, [𝜒𝐼, 𝜒𝐽] ≤ 𝜇. Since 𝜇 is 𝐿−fuzzy prime, either 𝜒𝐼 ≤ 𝜇
or 𝜒𝐽 ≤ 𝜇, implying that either 𝐼 ⊆ 𝑃 or 𝐽 ⊆ 𝑃. Therefore 𝑃
is prime. Conversely suppose that 𝐼𝑚𝑔(𝜇) = {1, 𝛼}, where 𝛼
is a prime element in 𝐿 and 𝑃 = 𝜇∗ is a prime ideal of 𝐴. Let𝜎 and 𝜃 be 𝐿−fuzzy ideals of 𝐴 such that [𝜎, 𝜃] ≤ 𝜇. Suppose
if possible that there exist 𝑥, 𝑦 ∈ 𝐴 such that 𝜎(𝑥) ≰ 𝜇(𝑥)
and 𝜃(𝑦) ≰ 𝜇(𝑦). Since 𝜇 is 2−valued, 𝜇(𝑥) = 𝜇(𝑦) < 1 so
that both 𝑥 and 𝑦 do not belong to 𝑃. Since 𝑃 is prime, there
exists 𝑧 ∈ [𝑥, 𝑦] such that 𝑧 ∉ 𝑃; that is, 𝜇(𝑧) = 𝛼. Otherwise,
if [𝑥, 𝑦] ⊆ 𝑃, then either 𝑥 ∈ 𝑃 or 𝑦 ∈ 𝑃. As 𝑧 ∈ [𝑥, 𝑦],
𝑧 = 𝑡(󳨀→𝑎 , 󳨀→𝑏 , 󳨀→𝑐 ) for some 󳨀→𝑎 ∈ 𝐴𝑛, 󳨀→𝑏 ∈ ⟨𝑥⟩𝑚, 󳨀→𝑐 ∈ ⟨𝑦⟩𝑘, where𝑡(󳨀→𝑢 , 󳨀→V , 󳨀→𝑤) is a commutator term in 󳨀→V , 󳨀→𝑤. Now consider the
following.

𝛼 = 𝜇 (𝑧) ≥ [𝜎, 𝜃] (𝑧) ≥ 𝜎𝑚 (󳨀→𝑏 ) ∧ 𝜃𝑘 (󳨀→𝑐 )
≥ 𝜎 (𝑥) ∧ 𝜃 (𝑦) (33)

That is, 𝜎(𝑥) ∧ 𝜃(𝑦) ≤ 𝛼. Since 𝛼 is a prime element in 𝐿, it
follows that either 𝜎(𝑥) ≤ 𝛼 = 𝜇(𝑥) or 𝜃(𝑦) ≤ 𝛼 = 𝜇(𝑦),
which is a contradiction. Therefore 𝜇 is 𝐿−fuzzy prime.

Let 𝑃 be a prime ideal of 𝐴 and 𝛼 be a prime element in𝐿. Consider an 𝐿−fuzzy subset 𝛼𝑃 of 𝐴 defined by

𝛼𝑃 (𝑥) = {{{
1 𝑖𝑓 𝑥 ∈ 𝑃
𝛼 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (34)
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for all𝑥 ∈ 𝐴.The above theorem confirms that𝐿−fuzzy prime
ideals of 𝐴 are only of the form 𝛼𝑃. This establishes a one-to-
one correspondence between the class of all 𝐿−fuzzy prime
ideals of 𝐴 and the collection of all pairs (𝑃, 𝛼) where 𝑃 is a
prime ideal in 𝐴 and 𝛼 is a prime element in 𝐿.
Corollary 24. Let 𝑃 be an ideal of𝐴 and 𝛼 a prime element in𝐿. 
en 𝑃 is a prime ideal if and only if 𝛼𝑃 is an 𝐿−fuzzy prime
ideal.

Theorem 25. If 𝜇 is an 𝐿−fuzzy prime ideal of 𝐴, then
𝜇 (𝑎) ∨ 𝜇 (𝑏) ≥ ⋀{𝜇 (𝑥) : 𝑥 ∈ [𝑎, 𝑏]} (35)

for all 𝑎, 𝑏 ∈ 𝐴.
Proof. We use proof by contradiction. Suppose if possible the
following.

⋀{𝜇 (𝑥) : 𝑥 ∈ [𝑎, 𝑏]} ≰ 𝜇 (𝑎) ∨ 𝜇 (𝑏) (36)

Then 𝜇(𝑥) ≰ 𝜇(𝑎) ∨𝜇(𝑏) for all 𝑥 ∈ [𝑎, 𝑏]. Since 𝜇 is prime, by
Theorem 23 there exists a prime element 𝛼 < 1 in 𝐿 such that𝜇(𝑎) = 𝛼 = 𝜇(𝑏) and 𝜇(𝑥) = 1 for all 𝑥 ∈ [𝑎, 𝑏], so [𝑎, 𝑏] ⊆ 𝜇∗.
Since 𝜇∗ is a prime ideal of 𝐴 (see Theorem 23), we get that
either 𝑎 ∈ 𝜇∗ or 𝑏 ∈ 𝜇∗.This is a contradiction.Thus the result
holds.

Theorem 26. If 𝐼𝑚𝑔(𝜇) = {1, 𝛼}, where 𝛼 is a prime element
in 𝐿 and 𝜇 satisfies the condition:

𝜇 (𝑎) ∨ 𝜇 (𝑏) ≥ ⋀{𝜇 (𝑥) : 𝑥 ∈ [𝑎, 𝑏]} (37)

for all a, 𝑏 ∈ 𝐴, then 𝜇 is 𝐿−fuzzy prime.

It is natural to ask ourselves, does every algebra in K
have 𝐿−fuzzy prime ideals? Of course, probably no. In the
following theorem we give a sufficient condition for an
algebra 𝐴 to have 𝐿−fuzzy prime ideals.

Theorem 27. Let 𝐴 be an algebra satisfying the following.
𝑥 ∈ [𝑥, 𝑥] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐴 (38)

If 𝑎 ∈ 𝐴 and 𝜇 is an 𝐿−fuzzy ideal of 𝐴 such that 𝜇(𝑎) ≤ 𝛼
where 𝛼 is an irreducible element in 𝐿, then there exists an𝐿−fuzzy prime ideal 𝜃 of 𝐴 such that

𝜇 ≤ 𝜃
𝑎𝑛𝑑 𝜃 (𝑎) ≤ 𝛼. (39)

Proof. Put F = {𝜎 ∈ FI(𝐴) : 𝜇 ≤ 𝜎 𝑎𝑛𝑑 𝜎(𝑎) ≤ 𝛼}. Clearly𝜇 ∈ F so thatF is nonempty and hence it forms a poset under
the inclusion ordering of 𝐿−fuzzy sets. By applying Zorn’s
lemma we can choose a maximal element, say 𝜃, in F. Now
it is enough to show that 𝜃 is prime. Suppose not. Then there
exist 𝐿−fuzzy ideals 𝜎 and ] of 𝐴 such that [𝜎, ]] ≤ 𝜃 but𝜎 ≰ 𝜃 and ] ≰ 𝜃. Put 𝜃1 = 𝜃 ∨ 𝜎 and 𝜃2 = 𝜃 ∨ ]. Then 𝜃1 and𝜃2 are 𝐿−fuzzy ideals of𝐴 such that 𝜃 ≨ 𝜃1 and 𝜃 ≨ 𝜃2. By the
maximality of 𝜃 inF both 𝜃1 and 𝜃2 do not belong toF. Thus

𝜃1 (𝑎) ≰ 𝛼
𝑎𝑛𝑑 𝜃2 (𝑎) ≰ 𝛼. (40)

Since 𝑎 ∈ [𝑎, 𝑎] and 𝛼 is ∧−irreducible element in 𝐿, we
get [𝜃1, 𝜃2](𝑎) ≰ 𝛼, so 𝜃(𝑎) ≰ 𝛼, which is a contradiction.
Therefore 𝜃 is prime.

If 𝐴 is a nontrivial algebra such that 𝑎 ∈ [𝑎, 𝑎] for all𝑎 ∈ 𝐴, then it can be deduced from the above theorem that𝐿−fuzzy prime ideals exist in 𝐴.
Definition 28. An 𝐿−fuzzy subset 𝜆 of 𝐴 is called an 𝐿−fuzzy𝑚−system (resp., an 𝐿−fuzzy 𝑛−system) if for all 𝑎, 𝑏 ∈ 𝐴,
there exists 𝑥 ∈ [𝑎, 𝑏] (resp., there exists 𝑥 ∈ [𝑎, 𝑎]) such that

𝜆 (𝑥) ≥ 𝜆 (𝑎) ∧ 𝜆 (𝑏) (𝑟𝑒𝑠𝑝. 𝜆 (𝑥) ≥ 𝜆 (𝑎)) . (41)

Lemma29. An𝐿−fuzzy subset 𝜆 of𝐴 is an 𝐿−fuzzy𝑚−system
(resp., a fuzzy 𝑛−system) if and only if the level set 𝜆𝛼 is an𝑚−system (resp., an 𝑛−system) for all 𝛼 ∈ 𝐿.
Theorem30. Let 𝜇 be an 𝐿−fuzzy ideal of𝐴 and 𝜆 an 𝐿−fuzzy𝑚−system such that𝜇∩𝜆 ≤ 𝛼, where𝛼 is an irreducible element
in 𝐿. 
en there exists 𝐿−fuzzy prime ideal 𝜃 of 𝐴 such that

𝜇 ≤ 𝜃
𝑎𝑛𝑑 𝜃 ∩ 𝜆 ≤ 𝛼. (42)

Proof. PutF = {𝜎 ∈ FI(𝐴) : 𝜇 ≤ 𝜎 𝑎𝑛𝑑 𝜎∩𝜆 ≤ 𝛼}. Clearly𝜇 ∈ F so thatF is nonempty, and hence it forms a poset under
the inclusion ordering of 𝐿−fuzzy sets. By applying Zorn’s
lemma we can choose a maximal element, say 𝜃, in F. Now
it is enough to show that 𝜃 is prime. Suppose not. Then there
exist 𝐿−fuzzy ideals 𝜎 and ] of 𝐴 such that [𝜎, ]] ≤ 𝜃, but𝜎 ≰ 𝜃 and ] ≰ 𝜃. Put 𝜃1 = 𝜃 ∨ 𝜎 and 𝜃2 = 𝜃 ∨ ]. Then 𝜃1 and𝜃2 are 𝐿−fuzzy ideals of 𝐴 such that 𝜃 ≨ 𝜃1 and 𝜃 ≨ 𝜃2. By
the maximality of 𝜃 in F both 𝜃1 and 𝜃2 do not belong to F
so there exist 𝑎, 𝑏 ∈ 𝐴 such that

(𝜃1 ∩ 𝜆) (𝑎) ≰ 𝛼
𝑎𝑛𝑑 (𝜃2 ∩ 𝜆) (𝑏) ≰ 𝛼. (43)

Since [𝜎, ]] ≤ 𝜃, we have [𝜃1, 𝜃2] ≤ 𝜃. If 𝑥 ∈ [𝑎, 𝑏], then𝑥 = 𝑡(󳨀→𝑐 , 󳨀→𝑢 , 󳨀→V ) for some 󳨀→𝑐 ∈ 𝐴𝑛, 󳨀→𝑢 ∈ ⟨𝑎⟩𝑚, 󳨀→V ∈ ⟨𝑏⟩𝑘, and
some commutator term 𝑡(󳨀→𝑥, 󳨀→𝑦, 󳨀→𝑧 ) in󳨀→𝑦, 󳨀→𝑧 .Then for each𝑥 ∈[𝑎, 𝑏] the following holds.

𝜃 (𝑥) ≥ [𝜃1, 𝜃2] (𝑥) ≥ 𝜃1 (𝑎) ∧ 𝜃2 (𝑏) (44)

Also we have 𝜃1(𝑎) ∧ 𝜃2(𝑏) ≰ 𝛼, which gives that 𝜃(𝑥) ≰ 𝛼.
However, since 𝜃 ∩ 𝜆 ≤ 𝛼 and 𝛼 is an irreducible element in𝐿, we get that 𝜆(𝑥) ≤ 𝛼 for all 𝑥 ∈ [𝑎, 𝑏]. This contradicts that𝜆 is a fuzzy𝑚−system. Therefore 𝜃 is prime.

For a nontrivial algebra 𝐴, to have an 𝐿−fuzzy𝑚−system
is a sufficient condition for𝐴 to possess 𝐿−fuzzy prime ideals.

5. Maximal Fuzzy 𝐿−Ideals
A maximal 𝐿−fuzzy ideal of 𝐴 is a maximal element in the
collection of all nonconstant 𝐿−fuzzy ideals of 𝐴 under the
pointwise partial ordering of 𝐿−fuzzy sets.
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An element 1 ̸= 𝛼 in 𝐿 is called a dual atom if there
is no 𝛽 in 𝐿 such that 𝛼 < 𝛽 < 1. In other words 𝛼 is
maximal in 𝐿 − {1}. In the following theorem we give an
internal characterization of 𝐿−fuzzy maximal ideals in 𝐴.
Theorem 31. An 𝐿−fuzzy ideal 𝜇 of 𝐴 is maximal if and only
if 𝐼𝑚𝑔(𝜇) = {1, 𝛼}, where 𝛼 is a dual atom in 𝐿 and the set𝜇∗ = {𝑥 ∈ 𝐴 : 𝜇(𝑥) = 1} is a maximal ideal of 𝐴.
Proof. Suppose that 𝜇 is maximal. Clearly 1 ∈ 𝐼𝑚𝑔(𝜇), and
since𝜇 is nonconstant, there is some 𝑎 ∈ 𝐴 such that𝜇(𝑎) < 1.
We first show that 𝜇 assumes exactly one value other than 1.
Let 𝑥, 𝑦 ∈ 𝐴 such that 𝜇(𝑥) < 1 and 𝜇(𝑦) < 1. Put 𝛼 =𝜇(𝑥) and 𝛽 = 𝜇(𝑦). Define 𝐿−fuzzy subsets 𝜇∨𝛼 and 𝜇∨𝛽 of 𝐴 as
follows:

𝜇∨𝛼 (𝑧) = 𝜇 (𝑧) ∨ 𝛼
𝑎𝑛𝑑 𝜇∨𝛽 (𝑧) = 𝜇 (𝑧) ∨ 𝛽 (45)

for all 𝑧 ∈ 𝐴. Then it can be verified that both 𝜇∨𝛼 and 𝜇∨𝛽 are𝐿−fuzzy ideals of 𝐴 such that 𝜇 ≤ 𝜇∨𝛼 and 𝜇 ≤ 𝜇∨𝛽 . By the
maximality of 𝜇 we get that 𝜇 = 𝜇∨𝛼 and 𝜇 = 𝜇∨𝛽 . Thus 𝛼 = 𝛽.
Therefore 𝐼𝑚𝑔(𝜇) = {1, 𝛼} for some𝛼 ∈ 𝐿−{1}. Next we prove
that this 𝛼 is a dual atom. Let 𝛽 ∈ 𝐿 such that 𝛼 < 𝛽. Define
an 𝐿−fuzzy subset 𝜎 of 𝐴 by

𝜎 (𝑧) = {{{
1 𝑖𝑓 𝜇 (𝑧) = 1
𝛽 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (46)

for all 𝑧 ∈ 𝐴. Then 𝜎 is an 𝐿−fuzzy ideal of𝐴 such that 𝜇 < 𝜎.
By the maximality of 𝜇 it yields that 𝜎 = 1𝐴; i.e., 𝜎(𝑧) = 1 for
all 𝑧 ∈ 𝐴, so 𝛽 = 1. Therefore 𝛼 is a dual atom. It remains
to show that 𝜇∗ is a maximal ideal of 𝐴. Clearly it is a proper
ideal. Let 𝐽 be a proper ideal of 𝐴 such that 𝜇∗ ⊆ 𝐽. Define an𝐿−fuzzy subset 𝜎 of 𝐴 by

𝜎 (𝑧) = {{{
1 𝑖𝑓 𝑧 ∈ 𝐽
𝛼 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (47)

for all 𝑧 ∈ 𝐴. Then 𝜎 is a nonconstant 𝐿−fuzzy ideal of 𝐴
such that 𝜇 ≤ 𝜎. Since 𝜇 is maximal, we get 𝜇 = 𝜎, so𝜇∗ = 𝐽.Therefore 𝜇∗ is maximal among all proper ideals of𝐴.
Conversely suppose that 𝐼𝑚𝑔(𝜇) = {1, 𝛼}, where 𝛼 is a dual
atom in 𝐿 and the set 𝜇∗ = {𝑥 ∈ 𝐴 : 𝜇(𝑥) = 1} is a maximal
ideal of 𝐴. Let 𝜎 be a nonconstant 𝐿−fuzzy ideal of 𝐴 such
that 𝜇 ≤ 𝜎. Then 𝜎(𝑥) = 1 for all 𝑥 ∈ 𝜇∗ and 𝛼 ≤ 𝜎(𝑥) for
all 𝑥 ∈ 𝐴 − 𝜇∗. We show that 𝜎 = 𝜇. Suppose not. Then there
exists 𝑥 ∈ 𝐴 such that 𝜎(𝑥) > 𝜇(𝑥), so 𝑥 ∈ 𝐴−𝜇∗. If 𝜎(𝑥) = 1,
then 𝑥 ∈ 𝜎∗ = {𝑧 ∈ 𝐴 : 𝜎(𝑧) = 1} and 𝜇∗ ⊊ 𝜎∗ ⊊ 𝐴.
This contradicts the maximality of 𝜇∗. Also if 𝜎(𝑥) < 1, then𝛼 ≤ 𝜎(𝑥) < 1. Again this contradicts the hypothesis that 𝛼 is
a dual atom. Therefore 𝜎 = 𝜇. Hence 𝜇 is maximal.

The above theorem confirms that there is a one-to-one
correspondence between the class of all maximal 𝐿−fuzzy
ideals and the set of all pairs (𝑀, 𝛼) where 𝑀 is a maximal
ideal in 𝐴 and 𝛼 is a dual atom in 𝐿.

Theorem32. If𝐴 is an algebra inwhich everymaximal ideal is
a prime ideal, then every maximal 𝐿−fuzzy ideal is an 𝐿−fuzzy
prime ideal.

For instance, if [𝐴, 𝐴] = 𝐴, then every maximal 𝐿−fuzzy
ideal is an 𝐿−fuzzy prime ideal.

6. Conclusion

In this paper, the commutator (or the product) of 𝐿−fuzzy
ideals is defined and investigated in a more general context,
in universal algebras. By the use of this commutator, 𝐿−fuzzy
prime ideals in universal algebras are defined and fully char-
acterized. Furthermore, maximal 𝐿−fuzzy ideals of universal
algebra are studied.

The study of fuzzy semiprime ideals in universal algebras
is under investigation by the authors using the commutator
of 𝐿−fuzzy ideals. Moreover, the radical of 𝐿−fuzzy ideals
in universal algebras will be studied and would be applied
to characterize the central properties of 𝐿−fuzzy semiprime
ideals.
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