
Research Article
Fuzzy Fractional Evolution Equations and Fuzzy
Solution Operators

Atimad Harir , Said Melliani , and Lalla Saadia Chadli

Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, P.O. Box 523,
Beni Mellal 23000, Morocco

Correspondence should be addressed to Atimad Harir; atimad.harir@gmail.com

Received 25 April 2019; Revised 5 August 2019; Accepted 31 August 2019; Published 14 November 2019

Academic Editor: Jose A. Sanz

Copyright © 2019 Atimad Harir et al. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the fuzzy fractional evolution equations of order q (FFEE) with fuzzy Caputo fractional derivative are introduced.
We study the existence and uniqueness of mild solutions for FFEE under some conditions. Also, we generalize the definition of the
fuzzy fractional integral and derivative order q. 'e fuzzy Laplace transform is presented and proved. 'e solvability of the
problem (FFEE) and the properties of the fuzzy solution operator and its generator are investigated and developed.

1. Introduction

'e fuzzy fractional differential equations (FFDEs) can also
offer a more comprehensive account of the process or
phenomenon. 'is has recently captured much attention in
FFDEs. As the derivative of a function is defined in the sense
of Riemann–Liouville, Grünwald–Letnikov, or Caputo in
fractional calculus, the used derivative is to be specified and
defined in FFDEs as well. FFDEs are examined in [1–5]. We
adopted the fuzzy Laplace transform method to solve FFDEs
because it has the advantage that it solves problems directly
without determining a general solution and obtaining
nonhomogeneous differential equations [5].

C. G. Gal and S. G. Gal studied [6], with more details,
fuzzy linear and semilinear (additive and positive homo-
geneous) operator theory on the complete metric space.

Let q ∈ R+, a> 0, and RF be the set of fuzzy real
numbers. Our aim in this paper is to investigate the existence
and uniqueness of the fuzzy mild solution for the fuzzy
fractional evolution equation:

Dqu(t) � Au(t) + f(t, u(t)), t ∈ T � [0, a],

Dju(t)
t�0 � uj(0), j � 0, 1, 2, . . . , k � [q],

⎧⎨

⎩

(1)

where A: D(A) ⊂ RF⟶ RF is the infinitesimal generator
of a q-resolvent family (Sq(t))t≥0, defined as RF, f ∈ T ×

RF⟶ RF satisfies some conditions that will be specified
later, and the fuzzy fractional derivative Dq is understood
here in the caputo sense.

2. Preliminaries

In this section, we introduce notations, definitions, and
preliminary facts which are used throughout this paper.

Let us denote by RF � u: R⟶ [0, 1]{ } the class of
fuzzy subsets of the real axis satisfying the following
properties [7]:

(i) u is normal, i.e., there exists an x0 ∈ R, such that
u(x0) � 1.

(ii) u is fuzzy convex, i.e., for x, y ∈ R and 0< λ≤ 1,

u(λx +(1 − λ)y)≥min[u(x), u(y)]. (2)

(iii) u is upper semicontinuous.

(iv) [u]0 � cl x ∈ R | u(x)> 0{ } is compact.

'en, RF is called the space of fuzzy numbers. Obvi-
ously,R ⊂ E. For 0< α≤ 1, denote [u]α � x ∈ R | u(x)≥ α{ },
and then from (i) to (iv), it follows that the α-level set
[u]α ∈ PK(R) for all 0≤ α≤ 1 is a closed bounded interval
which we denote by [u]α � [uα

1 , uα
2].
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Where PK(R) denotes the family of all nonempty
compact convex subsets of R and defines the addition and
scalarmultiplication inPK(R) as usual. For later purposes, we
define 0 ∈ RF as

0(t) �
1, t � 0,

0, t≠ 0.
 (3)

Theorem 1 (see [8]). If u ∈ RF, then

(i) [u]α ∈ PK(R) for all 0≤ α≤ 1.
(ii) [u]α2 ⊂ [u]α1 for all 0≤ α1 ≤ α2 ≤ 1.
(iii) αk  ⊂ [0, 1] is a nondecreasing sequence which

converges to α and then,

[u]
α

�∩
k≥1

[u]
αk . (4)

Conversely, if Aα � [uα
1 , uα

2]; α ∈ (0, 1]  is a family of
closed real intervals verifying (i) and (ii), then Aα  defined a
fuzzy number u ∈ RF such that [u]α � Aα.

Lemma 1 (see [9]). Let u, v : X⟶ [0, 1] be the fuzzy sets.

'en, u � v if and only if [u]α � [v]α for all α ∈ [0, 1]

'e following arithmetic operations on fuzzy numbers
are well known and frequently used below. If u, v ∈ RF, then

[u + v]
α

� u
α
1 + v

α
1 , u

α
2 + v

α
2,

[u − v]
α

� u
α
1 − v

α
2 , u

α
2 − v

α
1,

[λu]
α

� λ[u]
α

�
λuα

1 , λuα
2, if λ≥ 0,

λuα
2 , λuα

1, if λ< 0.

⎧⎪⎨

⎪⎩

(5)

For u, v ∈ RF, if there exists w ∈ RF such that u � v + w,
thenw is the Hukuhara difference of u and v denoted by u− hv.

Define d: RF × RF⟶ R+∪ 0{ } by the following
equation:

d(u, v) � sup
α∈[0,1]

dH [u]
α
, [v]

α
( , for all u, v ∈ RF, (6)

where dH is the Hausdorff metric defined in PK(R).

dH [u]
α
, [v]

α
(  � max u

α
1 − v

α
1


, u

α
2 − v

α
2


 . (7)

It is well known that (RF, d) is a complete metric space
[10]. We list the following properties of d(u, v):

d(u + w, v + w) � d(u, v),

d(u, v) � d(v, u),

d(ku, kv) � |k|d(u, v),

d(u, v)≤ d(u, w) + d(w, v),

(8)

for all u, v, w ∈ RF and λ ∈ R.
Let T � (0, a] ⊂ R be a compact interval. We denote by

C(T,RF) the space of all continuous fuzzy functions on T
and is a complete metric space with respect to the metric

h(u, v) � sup
t∈T

d(u(t), v(t)). (9)

Also, we denote by L1(T,RF) the space of all fuzzy
functions f: T⟶ RF which are Lebesgue integrable on
the bounded interval T of R.

Let u: T⟶ RF be a fuzzy function. We denote

[u(t)]
α

� u
α
1(t), u

α
2(t) , t ∈ T, α ∈ [0, 1]. (10)

'e derivative u′(t) of a fuzzy function u is defined by
[11]

u′(t) 
α

� u
α
1( ′(t), u

α
2( ′(t) , α ∈ [0, 1], (11)

provided this equation defines a fuzzy number u′(t) ∈ RF.
'e fuzzy integral 

b

a
u(t)dt, a, b ∈ T is defined by [12]


b

a
u(t)dt 

α

� 
b

a
u
α
1(t)dt, 

b

a
u
α
2(t)dt , (12)

provided that the Lebesgue integrals on the right exist.
From [13], we have the following theorems:

Theorem 2. 0ere exists a real Banach space X such thatRF

can be the embedding as a convex cone C with vertex 0 into X.
Furthermore, the following conditions hold:

(i) 0e embedding j is isometric
(ii) Addition in X induces addition in RF, i.e., for any

u, v ∈ RF

(iii) Multiplication by a non-negative real number in X
induces the corresponding operation in RF, i.e., for
any u ∈ RF

(iv) C-C is dense in X
(v) C is closed

Remark 1. Let j: RF⟶ X as j(u) � j((− 1)u), u ∈ RF. It
verifies the following properties:

‖j(u) − j(v)‖ � d(u, v),

j(su + tv) � sj(u) + tj(v),

for all u, v ∈ RF, t, s≥ 0,

j RF(  − j RF(  � C,

since(− 1)RF � RF.

(13)

Theorem 3. Let X be a Banach space and j an embedding as
in 0eorem 2, u: T⟶ RF, and assume j ∘ u is Bochner
integrable over T. 0en,  u ∈ RF, and

j  u(t)dt  �  j(u(t))dt. (14)

Remark 2. By the definition of fuzzy integral [14], the above
equality yields

j
− 1

 j(u(t))dt  �  u(t)dt. (15)
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3. Fuzzy Fractional Integral and Fuzzy
Fractional Derivative

Let u(t) ∈ RF be such that [u(t)]α � [uα
1(t), uα

2(t)] for all
t ∈ T and q ∈ R+. Suppose that uα

1 , uα
2 ∈ C(T,R)∩ L1(T,R)

for all α ∈ [0, 1], and let

Aα ≔
1
Γ(q)


t

0
(t − s)

q− 1
u
α
1(s)ds, 

t

0
(t − s)

q− 1
u
α
2(s)ds 

≔ ϕq(t)∗ u
α
1(t),ϕq(t)∗ u

α
2(t) .

(16)

Lemma 2 (see [1]). The family Aα; α ∈ [0, 1] , given by
(16), defined a fuzzy number u ∈ RF such that [u]α � Aα.

We define

ϕq(t) �

tq− 1

Γ(q)
, t> 0,

0, t≤ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ− q(t) � ϕ1+k− q(t)∗ δ1+k
(t), k � [q],

ϕ− n(t) � δn
(t), n � 0, 1, 2, . . . ,

(17)

where δn(t) is the nth derivative of the delta function and
Γ(·) is the gamma function (for the properties of ϕq(t), see
[15, 16]). 'ese functions satisfy the semigroup property:

ϕq(t)∗ ϕp(t) � ϕq+p(t), forp> 0. (18)

The Sobolev spaces can be defined in the following way
[17]:

W
k,p

(T,R) � u |∃φ ∈ L
p
(T,R) : u(t)

� 
k

j�0
Cj

tj

j!
+

tk

k!
∗φ(t), t ∈ T.

(19)

Note that φ(t) � uk+1(t), Cj � uj(0). Let

W
k,p
0 � u ∈W

k,p
(T,R)

 u
j
(0) � 0, j � 0, 1, 2, . . . , k .

(20)

So, u ∈W
k,p
0 , if u(t) � (tk− 1/k − 1!)∗φ(t) for some

φ ∈ L1(T,R).

Remark 3. Let u: T⟶ RF be such that [u(t)]α �

[uα
1(t), uα

2(t)] for all t ∈ T and α ∈ [0, 1]. Suppose that
uα
1 , uα

2 ∈Wk,1(T,R) for all α ∈ [0, 1], and let

Bα ≕ 
k

j�0
C
α
1( j

tj

j!
+

tk

k!
∗φα

1(t), 
k

j�0
C
α
2( j

tj

j!
+

tk

k!
∗φα

2(t)⎡⎢⎢⎣ ⎤⎥⎥⎦.

(21)

Note that φα
i (t) � (uα

i )(j)(t), (Cα
i )j � (uα

i )(j)(0), for
i � 1, 2.

According to lemma (2) and by the notation of φα
i and

(Cα
i )j, i � 1, 2, the family Bα, α ∈ [0, 1] , given by (21),

defined a fuzzy number u ∈ RF such that [u]α � Bα.

3.1. Fuzzy Fractional Integral and Derivative. Let
u ∈ C(T,RF)∩L1(T,RF). Define the fuzzy fractional
primitive of order q> 0 of u:

I
q
u(t) �

1
Γ(q)


t

a
(t − s)

q− 1
u(s)ds, t ∈ T, (22)

by

I
q
u(t) 

α
�

1
Γ(q)

 
t

0
(t − s)

q− 1
u
α
1(s)ds,


t

0
(t − s)

q− 1
u
α
2(s)ds, t ∈ T

� u
α
1(t)∗ ϕq(t), u

α
2(t)∗ϕq(t) , t ∈ T.

(23)

For q � 1, we obtain I1u(t) �
t

a
u(s)ds, t ∈ T, that is,

the integral operator. Also, the following properties are
obvious:

(i) Iq(cu)(t) � cIq(u)(t) for each constant c ∈ RF

(ii) Iq(u + v)(t) � Iq(u)(t) + Iq(v)(t)

Proposition 1. [1]. If u ∈ C(T,RF) ∩ L1(T,RF), then we
have

I
p
I

q
u � I

p+q
u, p, q> 0. (24)

Definition 1. Let u ∈ C1+k(T,RF)∩ L1(T,RF) be a given
function such that [u]α � [uα

1 , uα
2] for all t ∈ T, and

α ∈ [0, 1], the fuzzy fractional differential operator in the
Riemann–Liouville sense, is defined for all u satisfying

ϕk+1− q ∗ u ∈W
k,1

(T), (25)

D
q
u(t) � D

1+k ϕ1+k− q ∗ u (t) � D
1+k

I
k+1− q

u(t)

�
1

Γ(1 + k − q)
D

1+k


t

0
u(s)(t − s)

k− q
ds,

(26)
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by

D
q
u(t) 

α
� D

1+k ϕ1+k− q ∗ u
α
1 (t), D

1+k ϕ1+k− q ∗ u
α
2 (t)

�
1

Γ(1 + k − q)
D

1+k


t

0
u
α
1(s)(t − s)

k− q
ds,

D
1+k


1

0
u
α
2(s)(t − s)

k− q
ds.

(27)

In fact,

D
q
u(t) 

α
� D

q
u
α
1(t), D

q
u
α
2(t) , for all t ∈ T and α ∈ [0, 1],

(28)

and the fuzzy fractional differential operator in the Caputo
sense is defined:

D
q
c u(t) � D

1+kϕ1+k− q(t)∗ u(t) � I
k+1− q

D
1+k

u(t)

�
1

Γ(1 + k − q)


t

0
D

1+k
u(s)(t − s)

k− q
ds,

(29)

by

D
q
c u(t) 

α
� D

1+k
u
α
1(t)∗ϕ1+k− q(t), D

1+k
u
α
2(t)∗ϕ1+k− q(t)

�
1

Γ(1 + k − q)
 

t

0
D

1+k
u
α
1(s)(t − s)

k− q
ds,


t

0
D

1+k
u
α
2(s)(t − s)

k− q
ds.

(30)

For k � 0, we obtain [Dq
c u(t)]α � (1/Γ(1 − q))

[
t

0(d/ds)uα
1(t)(t − s)− qds, 

t

0(d/ds)uα
2(t)(t − s)− qds], pro-

vided that the equation defines a fuzzy number
Dq

c u(t) ∈ RF. In fact,

D
q
c u(t) 

α
� D

q
c u

α
1(t), D

q
cu

α
2(t) , for all t ∈ T and α ∈ [0, 1].

(31)

Some simple but relevant results valid for q, p, t> 0 are

I
qϕp � ϕq+p, D

qϕp � ϕp− q, p≥ q. (32)

Proposition 2. Let q> 0 and k � [q]. 0en, for any
u ∈ L1(T,RF),

D
q
I

q
u(t) � u(t). (33)

If moreover (25) holds, then

I
q
D

q
u(t) � u(t)−

h


k

j�0
ϕk+1− q ∗ u 

(j)
(0)ϕq+j− k(t). (34)

Proof. Let q> 0 and f: T⟶ RF be such that [u(t)]α �

[uα
1(t), uα

2(t)] for all t ∈ T and α ∈ [0, 1]. If
uα
1 , uα

2 ∈ C(T,R)∩ L1(T,R) for all α ∈ [0, 1], then [Iqu]α

satisfies (25): [Iqu]α � [ϕq ∗ u]α ∈ L1(T,RF) (i.e., ϕq ∗ uα
1 ,

ϕq ∗ uα
2 ∈ L1(T,R)) and

ϕk+1− q ∗ I
q
u 

α
� ϕk+1− q ∗ ϕq ∗ u 

α
� ϕk+1 ∗ u 

α ∈W
k,1
0 (T).

(35)

'at is, ϕk+1 ∗ uα
1 , ϕk+1 ∗ uα

2 ∈Wk,1
0 . So, we can apply

[Dqu]α to [Iqu]α and thanks to the semigroup property
(24)

D
q
I

q
u 

α
� D

k+1
I

k+1− q
I

q
u 

α
� D

k+1
I

k+1
u 

α
� [u]

α
.

(36)

If u satisfies (25), then according to (19),

ϕk+1− q ∗ u 
α

� 
k

j�0
Cjϕj+1(t) + ϕk+1 ∗φ⎡⎢⎢⎣ ⎤⎥⎥⎦

α

, (37)

where φ1,φ2 ∈ L1(T) and [Cj]
α � [(ϕk+1− q ∗ u)(j)(0)]α.

'erefore,

I
q
D

q
u 

α
� I

q
D

k+1
I

k+1− q
u 

α
� I

q
D

k+1ϕk+1− q ∗ u 
α

� I
qφ 

α
.

(38)

Convolving both sides of (37) with ϕq and applying the
semigroup property (18), we obtain

ϕk+1 ∗f 
α

� 
k

j�0
Cjϕq+j+1(t) + ϕq+k+1 ∗φ⎡⎢⎢⎣ ⎤⎥⎥⎦

α

. (39)

An application of Dk+1 to both sides gives

[u]
α

� 
k

j�0
Cjϕq+j− k(t) + ϕq ∗φ⎡⎢⎢⎣ ⎤⎥⎥⎦

α

� 
k

j�0
Cjϕq+j− k(t)⎡⎢⎢⎣ ⎤⎥⎥⎦

α

+ ϕq ∗φ 
α
,

(40)

and then,

[u]
α
−

h


k

j�0
Cjϕq+j+1− k(t)⎡⎢⎢⎣ ⎤⎥⎥⎦

α

� ϕq ∗φ 
α
, (41)

which together with (38) implies (34). If ϕk+1− q ∗ uα
1 ,

ϕk+1− q ∗ uα
2 ∈Wk,1

0 (T), that is, Cj � 0, j � 0, 1, . . . , k, we
have IqDqu � u. □

Remark 4

D
q
u(t) � 

k

j�0
u

j
(0)ϕj− q(t) + I

k+1− q
D

k+1
u(t), (42)

and then,
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D
q
c u(t) � D

q
u(t)−

h


k

j�0
u

j
(0)ϕj− q(t)

� D
q

u(t)−
h



k

j�0
u

j
(0)ϕj(t)⎛⎝ ⎞⎠.

(43)

'erefore,

D
q
c I

q
u(t) � u(t),

I
q
D

q
c u(t) � u(t)−

h


k

j�0
u

j
(0)ϕj,

(44)

and the first identity is valid for all uα
1 , uα

2 ∈ L1(T), the
second for uα

1 , uα
2 ∈ Ck(T).

3.2. Fuzzy Laplace Transform. Let u(t) ∈ RF be such that
[u(t)]α � [uα

1(t), uα
2(t)] for all t ∈ T. Suppose that

uα
1 , uα

2 ∈ C(T,R)∩L1(T,R) for all α ∈ [0, 1]. We define the
fuzzy Laplace transform [18] by

[Lu(λ)]
α

� 
∞

0
exp(− λt)u

α
1(t)dt, 

∞

0
exp(− λt)u

α
2(t)dt 

� Lu
α
1(λ), Lu

α
2(λ) ,

(45)

where λ> 0 and real.

Theorem 4. [18]. Let u and v are continuous fuzzy-valued
functions. Suppose that c1 and c2 are constants. 0en,

L c1u(λ)(  + c2v(λ)( (  
α

� c1[Lu(λ)]
α

+ c2[Lv(λ)]
α
,

(46)

Lemma 3. Let u is continuous fuzzy-valued function and
c ∈ R:

[Lcu(λ)]
α

� c[Lu(λ)]
α
. (47)

As in [5], we can introduce laplace transforms of de-
rivatives by:

Proposition 3. Let u ∈ C(T,RF)∩L1(T,RF), and then

LD
q
u(λ) � λq

Lu(λ)−
h



k

j�0
ϕk+1− q ∗ u 

(j)
(0)λk− j

, (48)

LD
q
c u(λ) � λq

Lu(λ)−
h



k

j�0
(u)

(j)
(0)λq− j

. (49)

Proof. We prove (49) because the proof of (48) is similar.
For arbitrary fixed α ∈ [0, 1], we have

λq
[Lu(λ)]

α
−

h


k

j�0
(u)

(j)
(0) 

α
λq− j

� λq
Lu

α
1(λ) − 

k

j�0
u
α
1( 

(j)
(0)λq− j

,

λq
Lu

α
2(λ) − 

k

j�0
u
α
2( 

(j)
(0)λq− j

.

(50)

We apply the properties of the Laplace transform, and
since Lϕq(λ) � λ− q, we obtain

LD
q
c u

α
1(λ) � λq

Lu
α
1(λ) − 

k

j�0
u
α
1( 

(j)
(0)λq− j

,

LD
q
c u

α
2(λ) � λq

Lu
α
2(λ) − 

k

j�0
u
α
2( 

(j)
(0)λq− j

.

(51)

'en, we conclude that

λq
[Lu(λ)]

α
−

h


k

j�0
(u)

(j)
(0) 

α
λq− j

� LD
q
c u

α
1(λ), LD

q
c u

α
2(λ) ,

(52)

by linearity of L,

λq
[Lu(λ)]

α
−

h


k

j�0
(u)

(j)
(0) 

α
λq− j

� L D
q
c u

α
1(λ), D

q
cu

α
2(λ) .

(53)

Using (31) leads to obtain

λq
[Lf(λ)]

α
−

h


k

j�0
(f)

(j)
(0) 

α
λq− j

� L D
q
c f(λ)(  

α
.

(54)□

3.3. Fuzzy Solution Operators. We adopt the general defi-
nition and theorem of operator theory on RF in [6]. Let
A: RF⟶ RF is linear if

A(x + y) � A(x) + A(y),

A(k · x) � k · A(x),
 (55)

for all x, y ∈ L(RF), k ∈ R, where L(RF) is A ∈ L+(RF)

and is continuous at each x ∈ RF and L+(RF) is semilinear
and continuous at 0.

Let us consider the metric Φ: L+(RF) × L+(RF)

⟶ R+

Φ(A, B) � sup d(Ax, Bx); ‖x‖F ≤ 1 , (56)

where ‖x‖F � d(0, x) and we have Φ(A, O) � |A|F, where
O : RF⟶ RF is given by O(x) � 0, ∀x ∈ RF.

Theorem 5. Let A be a bounded linear operator onRF [6]. If
|A|< 1, then i − A is invertible; moreover,
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lim
n�∞
Φ (i − A)

− 1
, 

n

k�0
A

k⎛⎝ ⎞⎠ � 0. (57)

Here, i: RF⟶ RF denotes the identity function of RF.

Proof. Recall that |‖A‖|F � sup d(Ax, 0), x ∈ RF, ‖x‖F ≤ 1 

∀x ∈ RF Setting Pnx � 
∞
n�0A

nx by ('eorem 3.5 and Cor-
ollary 3.6 in [6]), it suffices to show that Pnx is a Cauchy se-
quence in the complete metric space (L(RF),Φ). First
A ∈ L(RF), it followsAn ∈ L(RF) for n � 0, 1, 2, . . ..'en for
m< n we have

d Pnx, Pmx(  � d 
n

j�0
A

j
x, 

m

j�0
A

j
x⎛⎝ ⎞⎠

≤ 
n

j�m

d 0, A
j
x .

(58)

However,

d(0, A(Ax)) � A
2
x





F ≤ |‖A‖|F||Ax||F ≤ |‖A‖|

2
F‖x‖F,

(59)

and, so by induction, one can obtain

A
j











F
≤ |‖A‖|

j

F, for all j � 2, 3, . . . . (60)

We obtain

d Pnx, Pmx( ≤ 
n

j�m

|‖A‖|F||x||F( 
j
, (61)

and passing to supremum with ||x||F ≤ 1 we get

Φ Pn, Pm( ≤ 
n

j�m

|‖A‖|
j

F

≤ 
+∞

j�m

|‖A‖|
j

F �
|‖A‖|mF

1 − |‖A‖|F
⟶ 0 asm⟶∞.

(62)

'erefore, (Pn)n≥ 0 is a uniform Cauchy sequence on
[− a, a], a> 0.

(i − A) 
∞

n�0
A

n⎛⎝ ⎞⎠ � 
∞

n�0
A

n
− 
∞

n�0
A

n+1

� i + 
∞

n�1
A

n
− 
∞

n�1
A

n
� i,

(63)

and (
∞
n�0A

n)(i − A) � i. It now follows that
(i − A)− 1 � 

∞
n�0A

n; therefore, its limit (i − A)− 1 exists in
L(RF). So, limn�∞Φ((i − A)− 1, Pn) � 0 holds uniformly on
each compact interval [− a, a], a> 0. □

Motivated by the above definitions in [19, 20], we can
give the following definition.

Definition 2. 'e resolvent set of A, denoted by ρ(A), is the
set of all real numbers λq such that λqi − A is bijective, i.e.,

ρ(A) � λq ∈ R+
∗ : λq

i − A( 
− 1exists . (64)

Remark 5. Let |λq|> |‖A‖|. 'en, |||(A/λq)|||< 1. It follows
from 'eorem 5 that (i − (A/λq))− 1 exists, and

R λq
, A(  � λq

i − A( 
− 1

�
1
λq i −

A

λq 
− 1

. (65)

Lemma 4. Let A: RF⟶ RF and A1 � jAj− 1 : C⟶ C

tow operator.
A is the operator of the resolvent R(λq, A) on RF if and

only if A1 is the operator of the resolvent R1(λ
q, A1) defining

on the convex closed set C and R1(λ
q, A1) � jR(λq, A)j− 1 and

Φ(R(λq, A), O)≤ (M/|λq − ω|).

Proof. We assume that Φ(R(λq, A), O)≤ (M/|λq − ω|) on
RF. By the properties of j we have, for all u ∈ C,

R1 λq
, A1( u

����
���� � jR λq

, A( j
− 1

u





 � d R λq
, A( j

− 1
u, j

− 10 ,

d j
− 1

u, j
− 10  � ||u||.

(66)

It follows that

sup
u≤1

R1 λq
, A1( u





 � sup

||x||F≤1
d R λq

, A( x, 0( ,

R1 λq
, A1( 





 � Φ d R λq

, A( ( , O ≤
M

λq − ω



.

(67)

Conversely, if ‖R1(λ
q, A1)‖≤ (M/|λq − ω|) on C, then for

all x ∈ RF

d R λq
, A( x, 0(  � d j

− 1
R1 λq

, A1( jx, j
− 1

j0  � R1 λq
, A1( jx





,

‖jx‖ � d(x, 0).

(68)

It follows that

sup
‖x‖F≤1

d R λq
, A( x, 0(  � sup

||u||≤1
R1 λq

, A1( u





,

Φ R λq
, A( , O  � R1 λq

, A1( 





≤
M

λq − ω



,

(69)

which completes the proof. □
Next, we need to define the fuzzy solution operator (or

fuzzy q-resolvent family), which is similar to that given in
[19].

Consider the following particular case of (82) for the
Caputo fractional derivative evolution equation of order
q(k< q< k + 1) is an integer:

Dqu(t) � Au(t), t ∈ T, q ∈ R+,

u(0) � uj, Dju(t)
t�0 � uj(0) � 0, j � 1, 2, 3, . . . , k,

⎧⎨

⎩

(70)
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where A : RF⟶ RF.
Applying (44), we obtain that the Cauchy problem (26)

u(t) � u0 +
1
Γ(q)


t

0
(t − s)

q
Au(s)ds, (71)

and then we define the solution operator of (70) in terms of
the corresponding integral equation (71).

Definition 3. A family of bounded linear operators
Sq(t) 

t≥0 on RF is called a solution operator for (71) (or q-
resolvent family), if the following conditions are satisfied:

(1) Sq(t) is strongly continuous for t≥ 0 and Sq(0) � i,
the identity mapping on RF

(2) Sq(t)D(A) ⊂ D(A) and ASq(t)u0 � Sq(t)Au0 for all
u0 ∈ D(A), t≥ 0

(3) Sq(t)u0 is a solution of (71) for all u0 ∈ D(A), t≥ 0

Definition 4. 'e solution operator Sq(t) is called expo-
nentially bounded if there are constants M≥ 1 and w≥ 0
such that

Φ Sq(t), O ≤Me
wt

, t≥ 0. (72)

Proposition 4. If Sq(t) is the solution operator of (70) and
u0 ∈ RF, then if for t> 0, the Hukuhara difference
Sq(t)u0−

hu0 exists, we define

Au0 � Γ(1 + q) lim
t⟶0

Sq(t)u0−
hu0

tq
, (73)

which this limit exists in the metric space (RF, d).

Proof. Let v(·) ∈ C(T,RF), we have

v(t) � ϕ− 1 ∗ v(t) � ϕqϕ− 1− q ∗ v(t) � ϕq ∗ v(t) ∗ϕ− 1− q

� Γ(1 + q)
Iqv(t)

tq
.

(74)

Taking v(t) � (DqSq)(t)u0 and using (70) and (44), we
obtain (73) □

Lemma 5. Let A: RF⟶ RF and A1 � jAj− 1 : C⟶ C

tow operator.
A is the generator of a fuzzy q-resolvent family Sq(t) 

t≥0
on RF if and only if A1 is the generator of an q-resolvent
family S1q(t) 

t≥0 defining on the convex closed set C by
S1q � jSq(t)j− 1.

Proof. Follows from the definition of Sq(t) 
t≥0 and

S1q(t) 
t≥0 (see [19]), then Sq(t) 

t≥0 is the fuzzy solution
operator on RF if and only if S1q(t) 

t≥0 is the solution
operator on C.

We assume that A is the generator of a fuzzy q-re-
solvent family Sq(t) 

t≥0 on RF. By the properties of j we
have, for all u0 ∈ j− 1(D(A)),

Γ(q + 1) lim
t⟶0

S1q(t)u0 − u0

tq
� Γ(q + 1) lim

t⟶0

jSq(t)j− 1u0 − jj− 1u0

tq

� j Γ(q + 1) lim
t⟶0

Sq(t)j− 1u0−
hj− 1u0

tq
 

� jAj
− 1

u0 � A1u0.

(75)

Conversely, if A1 is the generator of a q-resolvent family
S1q(t) 

t≥0 on C, then for all u0 ∈ D(A)

Γ(q + 1) lim
t⟶0

Sq(t)u0−
h u0

tq
� Γ(q + 1) lim

t⟶0

j− 1S1q(t)ju0−
hj− 1ju0

tq

� j
− 1 Γ(q + 1) lim

t⟶0

S1qju0−
hju0

tq
⎛⎝ ⎞⎠

� j
− 1

A1ju0 � Au0.

(76)□

Lemma 6. Let A is a operator in (70) and j an embedding as
in0eorem 2, the solution operators Sq(t) of (70) is defined by

Sq(t) � L
− 1 λq− 1

R λq
, A(  (t). (77)

Proof. Taking the fuzzy Laplace transform of (70) on both
sides, we obtain

λq
L(u(t))(λ)−

hλq− 1
u0 � AL(u(t))(λ), (78)

and using the j,

λq
j(L(u(t))(λ)) − j(AL(u(t))(λ)) � λq− 1

j u0( , where λq > 0,

λq
j(L(u(t))(λ)) − j j

− 1
A1jL(u(t))(λ)  � λq− 1

j u0( ,

λq
I − A1( j(L(u(t))(λ)) � λq− 1

j u0( ,

λq
I − A1( L(j(u(t))(λ)) � λq− 1

j u0( .

(79)

Since (λqI − A1)
− 1 exist, i.e, λq ∈ ρ(A1) (see [20]), from

the above equation, we obtain

L(j(u(t))(λ)) � λq
I − A1( 

− 1λq− 1
j u0( . (80)

Now (87) follows easily by taking the inverse of Laplace
transform and applying j− 1

j(u(t)) � L
− 1 λq− 1

R1 λq
, A1(  j u0( ,

u(t) � L
− 1 λq− 1

j
− 1

R1 λq
, A1( j u0(  .

(81)

'is completes the proof. □

Advances in Fuzzy Systems 7



4. Fuzzy Fractional Differential Equations

Consider the following fuzzy fractional differential equation:

Dqu(t) � Au(t) + f(t, u(t)), t ∈ T, q ∈ R+,

Dju(t)
t�0 � uj(0), j � 0, 1, 2, . . . , k � [q],

⎧⎨

⎩

(82)

where A generator of q-resolvent family (Sq(t))t≥0 on RF,
Dq is the fuzzy caputo fractional differential operator define
by (29) and f ∈ T × RF⟶ RF is continuous.

Firstly, we consider the following Cauchy problem

Dqu(t) � Au(t), t ∈ T, q ∈ R+,

Dju(t)
t�0 � uj(0), j � 0, 1, 2, . . . , k � [q].

⎧⎨

⎩ (83)

'e roblem (70) is particular case of (83), and if (70) has
a solution operator Sq(t), then the corresponding problem
(83) is uniquely solvable with the solution

u(t) � 
k

j�0
I

j
Sq (t)uj, (84)

provided uj ∈ D(A), j � 0, 1, 2, . . . , k. For this reason, we
restrict ourselves to problem (71) (in crisp, see [19]).

Next, we consider the particular case of (82).

Dqu(t) � Au(t) + f(t, u(t)), t ∈ T, q ∈ R+,

Dju(t)
t�0 � u0, Dju(t)

t�0 � 0, j � 1, 2, . . . , k � [q],

⎧⎨

⎩

(85)

where A is a operator and f is an abstract function defined on
T × RF and with values in RF.

Theorem 6. Let A is an operator, f ≔ T × RF⟶ RF be
continuous on T and if f satisfies a Hölder condition with an
exponent of β ∈ (0, 1]

d(f(u), f(v))≤C(d(u, v))
β
. (86)

The function u(t) ∈ C(T,RF) is a solution of (85) if and
only if

u(t) � Sq(t)u0 + 
t

0
Tq(t − s)f(s, u(s))ds, (87)

where

Sq(t) � L
− 1 λq− 1

R λq
, A(  (t),

Tq(t) � L
− 1

R λq
, A( ( (t).

(88)

Proof. Now applying the fuzzy Riemann–Liouville frac-
tional integral operator (23) in (85) on both sides, we get

u(t)−
h
u0 � ϕq ∗Au(t) + ϕq ∗f(t, u(t)),

u(t) � u0 + ϕq ∗Au(t) + ϕq ∗f(t, u(t)),
(89)

and taking the fuzzy Laplace transform of (89) on both sides,
we obtain

L(u(t))(λ) � L u0( (λ) + L ϕq ∗Au(t) (λ)

+ L ϕq ∗f(t, u(t)) (λ),

λq
L(u(t))(λ)−

h
AL(u(t))(λ) � λq− 1

u0 + L(f(t, u(t)))(λ).

(90)

By using j and if (λqI − A1)
− 1 exists, i.e., λq ∈ ρ(A1),

from the above equation, we obtain

j(L(u(t))(λ)) � λq
I − A1( 

− 1λq− 1
j u0( 

+ λq
I − A1( 

− 1
j(L(f(t, u(t)))(λ)),

L(j(u(t))(λ)) � λq
I − A1( 

− 1λq− 1
j u0( 

+ λq
I − A1( 

− 1
L(j(f(t, u(t)))(λ)).

(91)

Now, (87) follows easily by taking the inverse of Laplace
transform:

j(u(t)) � L
− 1 λq

I − A1( 
− 1λq− 1

j u0( 

+ 
t

0
L

− 1 λq
I − A1( 

− 1
j(f(s, u(s)))ds,

(92)

and applying j− 1 and Lemma 4,

u(t) � L
− 1 λq

I − A( 
− 1λq− 1

u0

+ 
t

0
L

− 1 λq
I − A1( 

− 1
f(s, u(s))ds.

(93)

'is completes the proof. □

Theorem 7. Let A be a operator. If satisfies (86), then the
solutions of the Cauchy problem (82) are fixed points of the
operator equation:

φu(t) � 
k

j�0
I

j
Sq (t)uj + 

t

0
Tq(t − s)f(s, u(s))ds. (94)

Theorem 7 leads to the following appropriate definition
of a mild solution to (82).

Definition 5. A function u(t) ∈ C(T,RF) is called a mild
solution of (82), if it satisfies the operator equation:

u(t) � 
k

j�0
I

j
Sq (t)uj + 

t

0
Tq(t − s)f(s, u(s))ds. (95)

Theorem 8. Let A is a operator and f: T × RF⟶ RF be
continuous on T. Assume that

(H0)there exists M≥ 1 and ω> 0 such that

d Tqv(t), Tqw(t) ≤Me
ωt

d(v(t), w(t)), t ∈ T. (96)

(H1) there exists a constant L> 0, such that

8 Advances in Fuzzy Systems



d(f(t, v(t)), f(t, w(t)))≤Ld(v(t), w(t)), (97)

for every v(t), w(t) ∈ RF, t ∈ T. 0en, problem (82) has a
unique mild solution u(t) ∈ C(T,RF).

Proof. Let ψ : C(T,RF)⟶ C(T,RF) be the operator
defined by

ψu(t) � 
k

j�0
I

j
Sq (t)uj + 

t

0
Tq(t − s)f(s, u(s))ds. (98)

We have to show that u is mild solution of (82) if and
only if ψu � u and v(t), w(t) ∈ C(T,RF), we find that

d(ψv(t),ψw(t)) � d 
t

0
Tq(t − s)f(s, v(s))ds,


t

0
Tq(t − s)f(s, w(s))ds

≤ 
t

0
d( Tq(t − s)f(s, v(s)),

Tq(t − s)f(s, w(s))ds

≤ M 
t

0
e
ω(t− s)

d(f(s, v(s)), f(s, w(s)))ds

≤ Le
ωa


t

0
d(v(s), w(s))ds≤Lte

ωa
h(v, w).

(99)

We can deduce that

d ψ2
v(t),ψ2

w(t)  � Le
ωa


t

0
d(ψv(t),ψw(t))ds

≤Le
ωa


t

0
sLe

ωa
h(v, w)ds

≤
Leωat( )2

2!
h(v, w)

⋮⋮

d ψn
v(t),ψn

w(t)(  �
Leωat( )n

n!
h(v, w)

≤
Leωaa( )n

n!
h(v, w),

(100)

and it follows that

h ψn
v,ψn

w(  �
Leωat( )n

n!
h(v, w), ∀v, w ∈ C T,RF( .

(101)

Since ((Leωaa)n/n!)⟶ 0, ∃p ∈ N such that
((Leωaa)p/p!)< 1.

It follows that ψp is a contraction, and then
∃!u ∈ C(T,RF) such that ψpu � u.

We prove ψu � u.

ψp(u) � u implies that ψp+1(u) � ψu, one can write
ψp(ψu) � ψu it follows that ψu is a fixed point of ψp, and
since the fixed point is unique, we get ψ(u) � u.

Hence, (85) has a unique solution. □
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