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+e health index scheme can be the most fundamental tool that unifies all transformer condition status information into a singular
outcome, thereby enhancing the power transformer asset management and life longevity strategies.+is study aims at establishing
a multiple parameter-dependent transformer health index estimation model cascaded with a fuzzy logic inference system. +is
strategy is centered on the effect of dynamic loading regime, varying hotspot temperatures and multiple attesting results of the
insulation system. Furthermore, a nonintrusive degree of polymerization (DP) model based on furans and carbon oxide ratios as
DP pointers is also factored in developing the health index model. +e general outcome of the health index depends on entirely
considered elements, but not on any isolated attribute. Data obtained from in-service transformers were used to validate the
proposed model.+e outcome of the model mirrors the practical condition of the evaluated transformers.+erefore, the proposed
health index model can be a vital tool to asset managers and power utilities.

1. Introduction

Ageing infrastructure of electrical energy systems has lately
calls for concern and challenge to power utilities around the
globe. Catastrophic failures of ageing electrical equipment,
especially power transformers in a power grid, can cause
interruptions which result in both social and economic losses.
+erefore, it is very important to pay sufficient attention to
their maintenance and diagnostic and life span issues [1]. Due
to the extensive investment in power transformers and their
prominence as key elements which can affect system avail-
ability, the transformer assetmanagement system is presumed
to be the key aspect of equipment asset management in the
field of power engineering [1–3].

Transformer health index can be utilized as an asset
management decision support tool, residual life valuation,
risk pointer, and as a blueprint of maintenance scheme
[4–6]. +e health index (HI) has emerged to be the most
fundamental tool that unifies all transformer condition

status information into a singular outcome [6]. +e HI
highlights a threshold centered principle that allows power
utilities to classify the condition of an individual transformer
from being in an excellent to a degraded state of operation.
Accordingly, asset maintenance, refurbishment, or re-
placement decisions can be centered on a conjoint pointer.
Based on the information gathered during transformer
operation not limited to physical transformer and auxillary
equipment tests, transformer fault history, parameter lab
tests (oil quality lab tests), loading history, and a power
transformer health index can be established [1, 7].

Different health index models have been established in
different literature based on synthesis of different developers
using information attained from the insulation system in
order to minimize transformer outages [1, 5, 7–15]. Nev-
ertheless, transformers are exposed to different stresses
which act simultaneously inside the transformer making the
analysis challenging. +is makes it difficult to assess and
accurately interpret the power transformer’s health
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condition as well as estimate its technical end of life. Due to
these complications in diagnosis, a significant number of
transformers are failing before attaining the expected
technical life. However, being able to establish transformer
health index can avert possibilities of transformer outages.
+e weighting factor approach of data extracted from field
tests, laboratory, and operation history of transformers has
been the most used technique is computation of transformer
HI. Nevertheless, health index based on soft-computing
techniques have brightened the future of many power
utilities as these HI methodologies are easy to comprehend.
As highlighted in [1, 9–15], fuzzy logic HI approach based on
several transformer tests have been proposed in transformer
condition and health index assessment. Additionally,
probabilistic approaches [16], Bayesian networks [17], and
artificial neural networks have been used in determining
health index [18].

Since there is no standardized approach in defining the
scores and weights given to input parameters for health
index calculation based on weighting factor, the HI outcome
will differ as per the developer. However, this subjective
scoring and weighting strategy can be merged with in-
telligence-based algorithms to mimic the utility experience
in determining the asset health index. Even though the fuzzy
logic models conveyed in different texts have their peculiar
significance in defining the overall HI of transformers, most
of them consider limited variables which are influential in
deciding the health state of power transformers [14].
However, a multicriterion [1] and multiattribute [5]
transformer condition based on fuzzy logic was proposed. In
[1], the strategy was centered on the data-correlated auxillary
equipment and physical condition of the transformer.
However, in this technique, substantial diagnostic in-
formation related to internal transformer degradation and
ageing was overlooked. Additionally, the limitation of the
approach used in [5] arises when a thermally upgraded
insulation paper comes into play. +us, some variables such
as the degree of polymerization (DP) and operational stress
should be factored in when calculating transformer health
index. Furthermore, as observed in [13], it is also essential to
include the impact of transformer age and loading profile as
pointers in establishing an overall transformer health index.
However, DP measurement is an intrusive test which re-
quires de-energizing of the power transformer and take
paper samples, thereby disrupting continuity of power
supply. Furthermore, gas evolution can be due to insulation
ageing or through incipient faults. +us, the impact of the
evolved gases should be considered in determining the
health index by also assessing the origin of gasmanifestation.
Accordingly, implementation of a probable health index
calls for great caution in choosing the variables that have
great significant effect on the index outcome such that a
reasonable and reliable transformer condition is estimated.

+is paper aims at developing a multiparameter-de-
pendent transformer health index estimation model estab-
lished upon an integrated fuzzy inference system. It
considers the effect of loading regime, varying hotspot
temperatures and all attesting results of the insulation
system.+e general outcome of the establishedHI centers on

entirely reflected elements, not on any sole attribute. Ad-
ditionally, a nonintrusive DP estimation based on indicating
factors, furans and carbon oxides ratio, is also factored in the
health index model. Having a reasonable health index can
facilitate power transformer reliability and also enhance its
residual life span.

2. Transformer Health Index Pointers

In order to formulate a probable health index model of a
power transformer, careful determination and analysis of the
influencing parameters that leads to deterioration of a
transformer needs to be performed first. +e significance
and interpretations of some of the parameters that have
influence in the life span and insulation degradation of
power transformers in service are summarized in this
section.

2.1. Oil Quality Analysis (OQA). Attesting oil quality is
usually authenticated by a variety of electrical, physical, and
chemical tests conducted on oil test samples. Methods and
standards used in this study to measure and determine the
oil characteristics are highlighted in Table 1.

2.2. Dissolved Gas Analysis (DGA). Interpretation of DGA
techniques was performed after testing samples of trans-
former oil to quantify the composition of principle fault
gases. Internal electrical or thermal faults manifest through
insulation decomposition producing gases such as H2, CH4,
C2H2, C2H4, C2H6, CO, and CO2. Manifestation of CO2 and
CO discloses paper degradation-related faults whilst C2H4
and C2H6 are significant indicators of oil thermal activities
inside the transformer. Faults due to partial discharge can be
detected through increase of H2 and CH4, whereas arcing
can be can be mirrored by the progression of C2H2 and H2.
In this paper, DGA data acquired using a Total Oil Gas
Analyzer (TOGA) gas chromatography technique was used
in quantifying the concentration of dissolved gases.

2.3. Furanic Content in Oil Analysis (FA). Although furans
can exist in five different forms [19, 20], this study focused
on 2-FAL since it has been found that its concentration in oil
is directly correlated with the DP of the solid insulation that
relates to transformer age. 2-FAL content in the transformer
mineral oil was detected and well quantified by using the
high-performance liquid chromatography (HPLC) under
ASTM D-5837 test standards.

2.4. Degree of Polymerization (DP). +e degree of poly-
merization is a valuable indicator of the degradation con-
dition of the transformer insulation paper and its
mechanical properties [19, 21]. DP measurement is an in-
trusive test that requires sampling of insulating paper from a
disassembled transformer, thus making it impossible to do
on-line measurements. Moreover, this approach requires
utmost care, labor intensive, and is pricey and time con-
suming. +is has led to alternative techniques of DP
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estimation through usage of chemical indicators such as
furans, and/CO2/CO concentration ratio, and methanol
concentration in oil [19, 22–25]. In addition, mathematical
models based on relationships between 2-FAL concentration
and DP values have been formulated, and some of them are
summarized in [19]. Although, exclusive furan analysis
being the most dominant method of DP value estimation in
transformer insulation, its results are inconsistent depend-
ing on the type of insulation paper, loading regime, and
location of the transformer. In this paper, an alternative of
DP estimation is proposed as highlighted in the foregoing
sections.

3. Transformer Health Index Estimation

Estimation of the HI was centered on the fuzzy inference tool
based upon the calculation of five cumulative factors that
signifies the transformer condition established on DGA,
OQA, furans, DP, and operational ageing stress (OAS). +e
final HI value is the linguistic output of the fuzzy logic
model. +e assigned inputs are based on the aggregation of

each of the subsystem factor with respect to scores, weights,
or impact on the transformer’s insulation condition. Data
used to validate the HI model was obtained from trans-
formers from different substations in South Africa and
Zimbabwe.

3.1. Fuzzy Inference Health Index Model

3.1.1. Determination of Parameter Score. Several attributes
of a transformer can be used in ascertaining its health index.
+e fuzzy logic HI model inputs are centered on the con-
centration of dissolved gases factor (DGAF), oil quality
factor (OQF), furan content factor (FF), degree of poly-
merization (DP), and the operational ageing stress factor
(OASF). DGAF comprises seven variables, OQF involves six
attributes, OASF consists of two parameters. DP is a result of
the estimated value from furan content and carbon oxide
ratios while furans represent FF. Power utilities can differ on
the limits of transformer attributes. Accordingly, variation
in transformer health index for similar data can be observed,
depending on which organization limits are implemented.

Table 1: Oil quality parameters.

Serial no. Oil quality parameter Testing method/instrument Standards
1 Breakdown voltage (kV) Megger OTS100AF and Foster OSTS100F (0–100 kV) IEC 60156

2 Water content moisture (ppm) Karl Fischer Titration (KFT) method Moisture-in-oil
sensor ASTM D1533

3 Acidity Chemistry neutralization method ASTM D947
4 Colour and appearance Transmitted light and visual inspection IEC-ISO 2049 ASTMD-1524
5 Dielectric dissipation factor (DDF) Oil tan delta & resistivity test kit ex. MOTR IEC 60247
6 Interfacial tension (IFT) Tensiometer ASTM D-971

Table 2: Transformer standard parameter limits [1, 26].

Category Parameter
Condition

Normal Caution Alarm Failure
DGAF

Dissolved gases
H2 (ppm) 0–100 101–700 701–1800 >1800
CH4 (ppm) 0–120 121–400 401–1000 >1000
C2H2 (ppm) 0–1 2–7 7–35 >35
C2H4 (ppm) 0–50 51–100 101–200 >200
C2H6 (ppm) 0–65 66–100 101–150 >150
CO (ppm) 0–350 351–700 701–1400 >1400
CO2 (ppm) 0–2500 2501–4000 4001–10000 >10000

OQF
Oil quality
BDV (kV) 100–50 49–40 39–30 <30
IFT (mN/m) 50–30 30–23 23–18 <18

Moisture (ppm) 0–15 16–20 21–25 >25
Acidity (mg KOH/g) 0–0.05 0.051–0.1 0.11–0.2 >0.2

DDF 0-0.1 0.1–0.5 0.5–1 >1
Colour 0–1.5 1.5–2 2–2.5 >2.5

FF
Furans

Furans (ppm) 0–0.1 0.1–1 1–10 >10
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�e commonly accepted transformer attribute thresholds
are highlighted by IEEE, IEC, Dornenburg, California State
University Sacramento, and Bureau of Reclamation [1, 26].
In this paper, the IEEE standard C57.104–2008 parameter
limit was adopted as summarized in Table 2. Using data from
di�erent transformers, fuzzy logic HI was established ini-
tially by transforming the inputs into dimensionless vari-
ables between 0 and 1. �is was attained by normalizing the
data using limits that symbolize normal and extreme values
which are highlighted in Table 2. Additionally, the ranges of
the variables have been partitioned into four conditions.
Accordingly, by subjective reasoning, the four conditions of
each parameter are given suitable weights (w) spanning
between 0 and 10, as indicated in Table 3.

Computation of the exact weight of the variable of a
given concentration was performed by using equations (1),
[5], and (2).

Parameter score � Ki +
xi − ai
bi − ai
( ) × 2.5[ ]. (1)

Equation (2) only corresponds with breakdown voltage
(BDV) and interfacial tension (IFT) parameters whose
values the higher the better and vice versa and thus (1) had to
be modi�ed by rearranging it presented as follows:

Parameter score � Ki +
bi − xi
bi − ai
( ) × 2.5[ ], (2)

where,Ki signi�es the assigned minimum weight in the four
conditions of the parameters, xi is the current value of the
parameter considered (xi is represented by xi′ for DGAF
parameters, xi″ for FF parameter, and xi″′ for OQF pa-
rameters), ai and bi are the lower and the upper limits of the
conforming cluster of the parameter, and (xi − ai)/(bi − ai)
denotes normalization expression of assessing inputs, whilst
normalization of BDV and IFT was done using (bi − xi)/
(bi − ai).

3.1.2. DP Estimation Model. �e main byproducts of
transformer solid insulation considered in this paper mirror
the DP value of paper insulation constitute of furans (2-FAL),
CO2, and CO concentration. To map the transformer insu-
lation DP values, the proposed fuzzy logic model is developed
under MATLAB/Simulink platform. �e model is shown in
Figure 1, where furan (2-FAL) and CO2/CO are the model
inputs, whilst the output represents the insulation DP value.

�e associated membership functions as input attributes
are set based on the concentration of furan (2-FAL) con-
sidered on a scale of 0–12 (ppm) and amount of CO2 and CO
as a ratio from 0–12 based on various transformer test data,

as shown in Figures 2 and 3, respectively.�e �ve trapezoidal
membership linguistic values considered for the furan input
variable are normal (N), low (L), medium, high, and critical,
whilst CO2/CO input variable uses bad, low, medium, high,
and critical.

Table 3: Weights assigned to each of the parameters of the four
conditions.

Condition Condition representation Weights (w)
Normal Good [w≤ 2.5]
Caution Acceptable [2.5<w≤ 5.0]
Alarm Poor [5.0<w≤ 7.5]
Failure Worst [7.5<w≤ 10]

×
÷
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Figure 1: Fuzzy logic model for DP estimation.

High CriticalNL Medium

0

0.5

1

D
eg

re
e o

f m
em

be
rs

hi
p

4 62 8 10 120

Figure 2: Input parameter membership function-furans (2-FAL)
(ppm).

Low Medium High CriticalBad

0

0.5

1

D
eg

re
e o

f m
em

be
rs

hi
p

2 4 6 8 10 120

Figure 3: Input parameter membership function-CO2/CO ratio.

End-of-life Weak Healthy V.healthy

0

0.5

1

D
eg

re
e o

f m
em

be
rs

hi
p

200 400 600 800 1000 12000

Normal

Figure 4: Output variable membership function-DP value.
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Figure 5: Fuzzy logic model for operational ageing stress.

Table 4: Ranges obtained for summed parameters.

Summed parameters
Input category ranges

Low (L) Moderate (M) High (H) Critical (C)
DGAF 0≤17.5 17.5<M≤ 35 35<H≤ 52.5 52.5<C≤ 70
OQF 0≤15 15<M≤ 30 30<H≤ 45 45<C≤ 60
FF 0≤ 2.5 2.5<M≤ 5 5<H≤ 7.5 7.5<C≤ 10

FF = Ki + [(x″i – ai/bi – ai) × 2.5]

H2
CH4
C2H2
C2H4
C2H6
CO
CO2

Moisture

Acidity
DDF
Colour

BDV

IFT

Furans

[t.HST]
HST

[t.load]
Load

Operational stressOperational stress

DP value

Fuzzy logic

Fuzzy logic

Fuzzy logic model
Health index

Σ

×
÷

DGAF = Ki + [(x′i – ai/bi – ai) × 2.5]i=1
7

OQF = Ki + [(x‴i – ai/bi – ai) × 2.5]i=1
4

OQF = Ki + [(bi – x‴i /bi – ai) × 2.5]i=1
z

Figure 6: Fuzzy-based transformer health index model.

Low Moderate High Critical

0

0.5

1

D
eg

re
e o

f m
em

be
rs

hi
p

10 20 30 40 50 60 700

Figure 7: Input variable membership function-DGA Factor (DGAF).

Advances in Fuzzy Systems 5



+e membership functions of the output variable sig-
nifying the DP value are established on a scale of 0 to 1200
where linguistic values of End-of-life, Weak, Normal,
Healthy, and Very Healthy are used as indicated in Figure 4.

A set of “IF-THEN” statements as rules governing the
mapping of inputs into outputs were formulated. Illustra-
tions of the conveyed rules for DP estimation are as follows:

IF (Furans is normal) and (CO2/CO is low) THEN (DP is
V.Healthy)

IF (Furans is medium) and (CO2/CO is medium) THEN
(DP is Normal)
IF (Furans is high) and (CO2/CO is bad) THEN (DP is
End-of-Life)

3.1.3. Operational Ageing Stress Factor (OASF).
Transformer loading profile and temperature variations
(hotspot temperatures (HST)) are the characteristic
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Figure 9: Input variable MF-furans content factor (FF).
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Figure 10: Input variable MF-operational ageing stress factor (OASF).

Moderate Bad WorstGoodExcellent

0

0.5

1

D
eg

re
e o

f m
em

be
rs

hi
p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
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attributes governing the operational ageing stress of the
transformer insulation system. A fuzzy logic model for
determining the transformer operational stress level is
established upon load and HST as inputs on membership
function scaling of 0–1.2 pu (load) and 0–140°C (HST). +e
loading and temperature regime were taken to be of equal
significance during fuzzy logic rule formulation. +e mag-
nitude and rate of change of these parameters determines the
pace of operational criticality. +e operational stress level of
the transformer is upon a scale of 0 to 1 in which the worst
condition is reflected by values nearing 1. +e transformer
fuzzy logic model for operational ageing stress is shown in
Figure 5.

3.2. Transformation of HI Model Inputs into Fuzzy Variables.
Instead of using individual parameters as inputs to the HI
fuzzy logic model, summed scores for three transformer
parameter categories obtained using equation (1) and (2),
DP, and operation ageing stress factor were employed as the
underlining fuzzy inputs. +ese inputs are mapped into five
assessing fuzzy logic variable states using simple and
computational efficacy trapezoidal membership functions
(MF). +ese assessing states (Excellent, Good, Moderate,
Bad, and Worst) signify the health index of transformer
insulation. Excellent designates the best condition whereas
worst signifies immediate attention to the transformer. +e
associated membership function scale and their linguistic

labels for the summed inputs are shown in Table 4. +ese
scales are calculated by multiplying the lower and upper
limits of weights of the four conditions by the number of
parameters in DGAF, OQF, and FF. Furthermore, the DP
and OASF membership function was established upon a
scale of 0–1200 and 0-1, respectively. +e crisp HI output
was obtained through the center of gravity defuzzification
method. Although the centroid method is computationally
intensive, it was chosen due to its intuitive plausibility [27].

+e proposed fuzzy logic health index model for the
power transformer condition assessment process is depicted
in Figure 6. Figures 4 and 7–10 show the inputs membership
functions utilized in mapping the health index output,
whereas Figure 11 depicts the membership functions for the
established transformer health index output, whilst Fig-
ure 12 shows the established rules associated with the
proposed fuzzy logic model. +e output of the DP model
shown in Figure 4 was also used as an input to HI.

4. Results and Discussions

Test data from different transformers and sources high-
lighted in Table 5 were used in validation of the developed
model. +e validation was based on a linguistic label (Worst,
Bad, Moderate, Good, and Excellent) assigned to different
outcome states of the transformer after inputting test data
from the sampled in-service transformers. Table 6 shows the

1
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10
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16
17
18
19
20
21
22
23
24
25

DGAF + FF + QQF = 0.991 DP + OASF = 0.833 Overall-Tx-health-index = 0.992

Figure 12: Rules for the developed fuzzy logic-based transformer health index model.
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corresponding scores calculated as per the values of trans-
former parameters and the health indices calculated for a
sample of 20 in-service transformers. Using Transformer 8 as
an illustration, the established model health index output
signifies that the transformer is in the worst state. Its cor-
responding totals are DGAF� 63.64, OQF� 49.76, FF� 5.81,
DP� 262.5, and OASF� 0.25. From Table 4, it is noted that
DGAF and OQF fall in the critical range, whereas, FF exists
in the high range. Additionally, the estimated DP value
(through fuzzy logic sub model) approaches the end-of-life
category. +e critical state of DGAF is as a result of evolved
gases surpassing their limited thresholds. Furthermore, most
of the transformer oil quality tests (moisture, BDV, DDF,
colour, and acidity) were in high ranges thereby resulting in
worst transformer state. In addition, the results of both test
data and HI output can be justified as the transformer was
installed in 1976, and thus it was 37 years old at the time of
the tests (2013).

+e test data used in validating the proposed model
were also used in validating some of the models for health
index proposed in the literature. A comparative analysis of
four approaches is highlighted in Tables 7 and 8. +e utility
Health index estimation was based on Furans analysis and
oil quality factors, whereas the model in [8] was centered
upon seven inputs which are, moisture, acidity, BDV, DF,
Furans calculated DP, and TDCG, whilst a weighting factor
of three inputs based on transformer oil and paper tests was
established in [5]. It has been observed that though many
attributes were used in [8], it was cumbersome to formulate
many rules although three membership functions were
used in which different experts decision can compromise
the accuracy of the model by using fewer membership
functions. In [8], the number of rules was reduced; how-
ever, variables like DP and loading effect should also be
considered in HI estimation of which in [5] they were
overlooked. +e proposed model utilized the various

transformer tests and integrated them into influential
factors that mirror the transformer health index. Addi-
tionally, loading regime, DP, and hotspot temperatures
were considered in HI estimation. In Table 8, different HI
estimation methods have been presented. It is observed that
some transformers show different health status whereas
some show same HI status, but the magnitude of the
condition differs by using same data. Bold values indicate
where the HI differs for the compared models.

Taking the Utility HI estimation as the bench-mark,
Table 8 depicts the accuracy comparison between the fuzzy
logic models in [5, 8] and the present proposed method. +e
three methods showed accuracy levels of 92.5% [8], 93.3%
[5], and 95.5% (proposed method) against the utility HI
estimation. +is shows that all three methods have the ca-
pabilities of estimating the health index that can be em-
braced by utility expects for asset management. +e
criticality of the estimated HI was based on the parameter
threshold values highlighted in Table 2.

From Table 7, refurbishment, replacement, decision on
retirement, or scrapping the transformers in the worst state
is recommended since these transformers can fail untimely.
However, for transformers in bad state, proper diagnostic
measures and condition-based maintenance are suggested
and planning for their short term replacement or other
remedial actions. Transformers in moderate condition pose
for long-term refurbishment or replacement. However, their
condition does not promote them to be sidelined for
monitoring and diagnosis. Additionally, more frequent
sampling intervals should be administered in new trans-
formers in moderate state, so as to investigate any abnor-
malities that may result in accelerated insulation
degradation and ageing. Subsequently, the likelihood of
failure for transformers in excellent or good state is very low;
thus, only regular maintenance can be practiced as they
operate within nameplate specifications.

Table 7: Health index status by different methods for 20 different test transformers.

Tx. No
Transformer health index level and description

Utility estimation Method in [8] Method in [5] Proposed method
Tx1 Good 0.275 Good 0.275 Good 0.278 Good
Tx2 Moderate 0.552 Moderate 0.572 Moderate 0.657 Moderate
Tx3 Excellent 0.120 Excellent 0.143 Excellent 0.28 Good
Tx4 Worst 0.936 Worst 0.972 Worst 0.992 Worst
Tx5 Moderate 0.5 Moderate 0.452 Moderate 0.498 Moderate
Tx6 Good 0.273 Good 0.275 Good 0.275 Good
Tx7 Worst 0.832 Bad 0.894 Bad 0.944 Bad
Tx8 Worst 0.991 Worst 0.99 Worst 0.992 Worst
Tx9 Moderate 0.752 Bad 0.52 Moderate 0.528 Moderate
Tx10 Bad 0.899 Bad 0.934 Bad 0.991 Worst
Tx11 Good 0.225 Good 0.233 Good 0.248 Good
Tx12 Good 0.264 Good 0.273 Good 0.275 Good
Tx13 Excellent 0.083 Excellent 0.083 Excellent 0.12 Excellent
Tx14 Excellent 0.12 Excellent 0.122 Excellent 0.121 Excellent
Tx15 Moderate 0.45 Moderate 0.51 Moderate 0.525 Moderate
Tx16 Excellent 0.08 Excellent 0.104 Excellent 0.12 Excellent
Tx17 Good 0.25 Good 0.278 Good 0.348 Good
Tx18 Worst 0.887 Bad 0.9 Bad 0.991 Worst
Tx19 Worst 0.913 Bad 0.926 Bad 0.931 Bad
Tx20 Worst 0.98 Worst 0.983 Worst 0.992 Worst
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In a nutshell, the variances in transformer health status
might be due to variations in loading patterns, the harmonic
content of the loads, differences in maintenance strategies,
different stresses subjected to the transformers, partial-
discharge activities, and problems in the cooling mecha-
nisms or difference in ageing and degradation rate.

5. Conclusions

To improve on the consistency of the transformer insulation
health index model output, an intelligent health index model
was developed based on the transformer multiattributes
cascaded with an inference system which relies on the in-
terpretation of an experienced expert.+e computation of the
HI was centered on the fuzzy inference tool based upon the
calculation of cumulative factors that signifies the transformer
insulation condition established on dissolved gas analysis
factor, oil quality analysis factor, Furans content factor, degree
of polymerization (DP), and operational ageing stress factor.
+e DP value was established from a fuzzy logic-based model
using Furans (2-FAL) and carbon oxides ratio as the inputs.
+e operational ageing stress was framed from the trans-
former loading and transformer hot spot temperature profile.
+e overall resultant of the health index assessment was
governed by all considered parameters as a whole, not on any
specific individual parameter. Hence, this approach reflects a
reliable and truthful insulation health index for the trans-
formers. However, transformer health status evaluation can
be enhanced by using the rate of change of dissolved gases and
oil characteristics. However, in this paper, the data for rate of
change of the variables were not available. Having a rea-
sonable health index can facilitate in power transformer re-
liability and also enhance its residual life span.
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findings of this study.
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