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This paper presents a novel analytical approach to evaluating continuous, nonmonotonic functions of independent fuzzy numbers.
The approach is based on a parametric𝛼-cut representation of fuzzy numbers and allows for the inclusion of parameter uncertainties
into mathematical models.

1. Introduction

This paper continues the research fromour previous work [1].
In [1], we formulated a practical analytical approach to evalu-
ating continuous, monotonic functions of independent fuzzy
numbers, which is based on an alternative formulation of the
extension principle [2]. In this paper, we extend this approach
to general, nonmonotonic functions of independent fuzzy
numbers. For the theoretical background, we assume the
reader is familiar with Sections 2 and 4 from [1].

2. Preliminaries

In the remainder of this paper, we will use two typical fuzzy
numbers in engineering, the triangular and the Gaussian
fuzzy number. The definitions are provided below.

Definition 1. The triangular fuzzy number (TFN) [3]

𝑥 = tfn (𝑥, 𝜏L, 𝜏R) (1)

is defined by the membership function

𝜇
𝑥

(𝑥) =

{
{

{
{

{

1 +

𝑥 − 𝑥

𝜏
L , 𝑥 − 𝜏

L
≤ 𝑥 ≤ 𝑥,

1 −

𝑥 − 𝑥

𝜏
R , 𝑥 < 𝑥 ≤ 𝑥 + 𝜏

R
,

(2)

where 𝑥 denotes the modal value, 𝜏L denotes the left-hand,
and 𝜏R denotes the right-hand spread of 𝑥. If 𝜏L = 𝜏R, the TFN
is called symmetric. Its 𝛼-cuts 𝑥(𝛼) = [𝑥

L
(𝛼), 𝑥

R
(𝛼)] result

from the inverse functions of (2) with respect to 𝑥:

𝑥
L
(𝛼) = 𝑥 − 𝜏

L
(1 − 𝛼) , 0 < 𝛼 ≤ 1,

𝑥
R
(𝛼) = 𝑥 + 𝜏

R
(1 − 𝛼) , 0 < 𝛼 ≤ 1.

(3)

Definition 2. The Gaussian fuzzy number (GFN) [3]

𝑥 = gfn (𝑥, 𝜎L, 𝜎R) (4)

is defined by the membership function

𝜇
𝑥

(𝑥) =

{
{
{
{
{

{
{
{
{
{

{

exp[−1
2

(

𝑥 − 𝑥

𝜎
L )

2

] , 𝑥 ≤ 𝑥,

exp[−1
2

(

𝑥 − 𝑥

𝜎
R )

2

] , 𝑥 > 𝑥,

(5)

where 𝑥 denotes the modal value, 𝜎L denotes the left-hand,
and 𝜎

R denotes the right-hand standard deviation of 𝑥. If
𝜎
L
= 𝜎

R, the GFN is called symmetric. Its 𝛼-cuts 𝑥(𝛼) =

[𝑥
L
(𝛼), 𝑥

R
(𝛼)] result in

𝑥
L
(𝛼) = 𝑥 − 𝜎

L
√−2 ln (𝛼), 0 < 𝛼 ≤ 1,

𝑥
R
(𝛼) = 𝑥 + 𝜎

R
√−2 ln (𝛼), 0 < 𝛼 ≤ 1.

(6)
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3. Analytical Approach

For evaluating continuous, nonmonotonic functions of inde-
pendent fuzzy numbers, the authors in [4, 5] suggest
including the extreme points as constant profiles into the
computation. However, this is not enough and can lead to
erroneous results, as was pointed out in [6]. More specifically,
all permutations of the interval boundaries of 𝑥

𝑚

(𝛼), 𝑚 =

1, . . . , 𝑛, with the components of the extreme points have to
be considered as well.

Basically, our analytical approach can be classified into
two parts depending on the monotonicity of 𝑓: a general and
an extended part.

3.1. General Part. If the function𝑓 is nonmonotonic in all𝑥
𝑚

,
𝑚 = 1, . . . , 𝑛, we can obtain the analytical solution as follows.

(1) Evaluate the function 𝑓 for all the 2𝑛 permutations of
the interval boundaries of 𝑥

𝑚

(𝛼) = [𝑥
L
𝑚

(𝛼), 𝑥
R
𝑚

(𝛼)],
𝑚 = 1, . . . , 𝑛. For example, if 𝑛 = 2, then compute

𝑦
LL
(𝛼) = 𝑓 (𝑥

L
1

(𝛼) , 𝑥
L
2

(𝛼)) ,

𝑦
LR
(𝛼) = 𝑓 (𝑥

L
1

(𝛼) , 𝑥
R
2

(𝛼)) ,

𝑦
RL
(𝛼) = 𝑓 (𝑥

R
1

(𝛼) , 𝑥
L
2

(𝛼)) ,

𝑦
RR
(𝛼) = 𝑓 (𝑥

R
1

(𝛼) , 𝑥
R
2

(𝛼)) .

(7)

(2) Evaluate the function 𝑓 for all the 2𝑛𝑠 combinations
of the interval boundaries of 𝑥

𝑚

(𝛼) = [𝑥
L
𝑚

(𝛼), 𝑥
R
𝑚

(𝛼)],
𝑚 = 1, . . . , 𝑛, with the components of the extreme
points (𝑥∗

1,𝑟

, . . . , 𝑥
∗

𝑛,𝑟

), 𝑟 = 1, . . . , 𝑠. For example, if
𝑛 = 3 and 𝑠 = 1, then compute

𝑦
L11

(𝛼) = 𝑓 (𝑥
L
1

(𝛼) , 𝑥
∗

2,1

, 𝑥
∗

3,1

) ,

𝑦
R11

(𝛼) = 𝑓 (𝑥
R
1

(𝛼) , 𝑥
∗

2,1

, 𝑥
∗

3,1

) ,

𝑦
1L1

(𝛼) = 𝑓 (𝑥
∗

1,1

, 𝑥
L
2

(𝛼) , 𝑥
∗

3,1

) ,

𝑦
1R1

(𝛼) = 𝑓 (𝑥
∗

1,1

, 𝑥
R
2

(𝛼) , 𝑥
∗

3,1

) ,

𝑦
11L

(𝛼) = 𝑓 (𝑥
∗

1,1

, 𝑥
∗

2,1

, 𝑥
L
3

(𝛼)) ,

𝑦
11R

(𝛼) = 𝑓 (𝑥
∗

1,1

, 𝑥
∗

2,1

, 𝑥
R
3

(𝛼)) .

(8)

(3) If (𝑥∗
1,𝑟

, . . . , 𝑥
∗

𝑛,𝑟

) ∈ supp(𝑥
1

) × ⋅ ⋅ ⋅ × supp(𝑥
𝑛

) for
certain 𝑟 ∈ {1, . . . , 𝑠}, compute the corresponding
𝑦
∗𝑟

=𝑓(𝑥
∗

1,𝑟

, . . . , 𝑥
∗

𝑛,𝑟

).
(4) Plot all solution candidates in the same diagram.
(5) Finally, starting from the modal point 𝑦 =

𝑓(𝑥
1

, . . . , 𝑥
𝑛

) at 𝛼 = 1, construct the maximum
envelope formed by the possible solution candidates
for 𝛼 → 0 under the condition of convexity.

This general part of our approach requires a total of
maximum 2

𝑛

+ (2𝑛 + 1)𝑠 and minimum 2
𝑛

+ 2𝑛𝑠 function
evaluations. It can be viewed as an analytical version of the
level interval algorithm [6].

Example 1. The function 𝑓
1

: R2 → R with

𝑦
1

= 𝑓
1

(𝑥
1

, 𝑥
2

) = 𝑥
2

1

+ 𝑥
2

2

− 5𝑥
1

− 𝑥
2

(9)

shall be evaluated for the two fuzzy numbers 𝑥
1

= tfn(2, 2, 3)
and 𝑥

2

= tfn(2, 2, 2). Since

𝜕𝑓
1

𝜕𝑥
1

= 2𝑥
1

− 5,

𝜕𝑓
1

𝜕𝑥
2

= 2𝑥
2

− 1,

(10)

the function 𝑓
1

is nonmonotonic in both 𝑥
1

and 𝑥
2

in the
domain supp(𝑥

1

) × supp(𝑥
2

) = (0, 5) × (0, 4) with one
(global) extremum at (𝑥∗

1,1

, 𝑥
∗

2,1

) = (2.5, 0.5) ∈ (0, 5) × (0, 4).
Hence, the general part of our approach should be applied.
The solution candidates for 𝑦

1

(𝛼) are

𝑦
LL
1

(𝛼) = 𝑓
1

(𝑥
L
1

(𝛼) , 𝑥
L
2

(𝛼)) = 8𝛼
2

− 12𝛼,

𝑦
LR
1

(𝛼) = 𝑓
1

(𝑥
L
1

(𝛼) , 𝑥
R
2

(𝛼)) = 8𝛼
2

− 24𝛼 + 12,

𝑦
RL
1

(𝛼) = 𝑓
1

(𝑥
R
1

(𝛼) , 𝑥
L
2

(𝛼)) = 13𝛼
2

− 17𝛼,

𝑦
RR
1

(𝛼) = 𝑓
1

(𝑥
R
1

(𝛼) , 𝑥
R
2

(𝛼)) = 13𝛼
2

− 29𝛼 + 12,

𝑦
L1
1

(𝛼) = 𝑓
1

(𝑥
L
1

(𝛼) , 𝑥
∗

2,1

) = 4𝛼
2

− 10𝛼 − 0.25,

𝑦
R1
1

(𝛼) = 𝑓
1

(𝑥
R
1

(𝛼) , 𝑥
∗

2,1

) = 9𝛼
2

− 15𝛼 − 0.25,

𝑦
1L
1

(𝛼) = 𝑓
1

(𝑥
∗

1,1

, 𝑥
L
2

(𝛼)) = 4𝛼
2

− 2𝛼 − 6.25,

𝑦
1R
1

(𝛼) = 𝑓
1

(𝑥
∗

1,1

, 𝑥
R
2

(𝛼)) = 4𝛼
2

− 14𝛼 + 5.75,

𝑦
∗1

1

= 𝑓
1

(𝑥
∗

1,1

, 𝑥
∗

2,1

) = −6.5.

(11)

We can see from their plots in Figure 1 that, starting from
the modal point at 𝛼 = 1, the left branch of the maximum
envelope, illustrated by the gray area, is formed by 𝑦RL

1

for
1 ≥ 𝛼 > 0.83, by 𝑦1L

1

for 0.83 ≥ 𝛼 > 0.25, and by 𝑦∗1
1

for 0.25 ≥ 𝛼 > 0, where the value 0.83 corresponds to the
intersection point between 𝑦RL

1

and 𝑦1L
1

and the value 0.25 to
the intersection point between 𝑦1L

1

and 𝑦∗1
1

. Its right branch,
on the other hand, is entirely formed by 𝑦LR

1

. Hence, the 𝛼-
cuts 𝑦

1

(𝛼) = [𝑦
L
1

(𝛼), 𝑦
R
1

(𝛼)] of 𝑦
1

are

𝑦
L
1

(𝛼) =

{
{
{
{

{
{
{
{

{

−6.5, 0 < 𝛼 ≤ 0.25,

4𝛼
2

− 2𝛼 − 6.25, 0.25 < 𝛼 ≤ 0.83,

13𝛼
2

− 17𝛼, 0.83 < 𝛼 ≤ 1,

𝑦
R
1

(𝛼) = 8𝛼
2

− 24𝛼 + 12, 0 < 𝛼 ≤ 1.

(12)
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Figure 1: Solution candidates from Example 1.

With 𝑦L
1

(0.25) = −6.5, 𝑦L
1

(0.83) = −5.138, 𝑦L
1

(1) = −4 =

𝑦
R
1

(1), and 𝑦R
1

(0) = 12, the membership function of 𝑦
1

yields

𝜇
𝑦

1

(𝑦) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1

4

+

1

4

√4𝑦 + 26, −6.5 < 𝑦 ≤ −5.138,

17

26

+

1

26

√52𝑦 + 289, −5.138 < 𝑦 ≤ −4,

3

2

−

1

4

√2𝑦 + 12, −4 < 𝑦 < 12.

(13)

3.2. Extended Part. Let the continuous function 𝑓 be
(strictly) monotonic increasing in 𝑥

𝑖

, 𝑖 = 1, . . . , 𝑘, (strictly)
monotonic decreasing in 𝑥

𝑗

, 𝑗 = 1, . . . , ℓ, monotonic in 𝑥
𝑝

,
𝑝 = 1, . . . , 𝑞, and nonmonotonic in 𝑥

𝑡

, 𝑡 = 1, . . . , 𝑢, in the
domain of interest, with 𝑘+ℓ+𝑞+𝑢 = 𝑛. Then, the analytical
solution can be obtained as follows.

(1) Evaluate the function 𝑓 for 𝑥L
𝑖

(𝛼), 𝑖 = 1, . . . , 𝑘,
and 𝑥

R
𝑗

(𝛼), 𝑗 = 1, . . . , ℓ, including all the 2𝑞+𝑢 per-
mutations of the interval boundaries of 𝑥

𝑝

(𝛼) =

[𝑥
L
𝑝

(𝛼), 𝑥
R
𝑝

(𝛼)], 𝑝 = 1, . . . , 𝑞, and 𝑥
𝑡

(𝛼) = [𝑥
L
𝑡

(𝛼),

𝑥
R
𝑡

(𝛼)], 𝑡 = 1, . . . , 𝑢, to compute the monotonic
solution candidates for 𝑦L(𝛼).

(2) Evaluate the function 𝑓 for 𝑥R
𝑖

(𝛼), 𝑖 = 1, . . . , 𝑘,
and 𝑥

L
𝑗

(𝛼), 𝑗 = 1, . . . , ℓ, including all the 2𝑞+𝑢 per-
mutations of the interval boundaries of 𝑥

𝑝

(𝛼) =

[𝑥
L
𝑝

(𝛼), 𝑥
R
𝑝

(𝛼)], 𝑝 = 1, . . . , 𝑞, and 𝑥
𝑡

(𝛼) = [𝑥
L
𝑡

(𝛼),

𝑥
R
𝑡

(𝛼)], 𝑡 = 1, . . . , 𝑢, to compute the monotonic
solution candidates for 𝑦R(𝛼).

(3) Evaluate the function 𝑓 for 𝑥L
𝑖

(𝛼), 𝑖 = 1, . . . , 𝑘, and
𝑥
R
𝑗

(𝛼), 𝑗 = 1, . . . , ℓ, including all the 𝑢𝑠 combinations
of the interval boundaries of 𝑥

𝑚

(𝛼) = [𝑥
L
𝑚

(𝛼), 𝑥
R
𝑚

(𝛼)],
𝑚 = 𝑘 + ℓ + 𝑞 + 1, . . . , 𝑛, with the components of
the extreme points (𝑥∗

1,𝑟

, . . . , 𝑥
∗

𝑢,𝑟

), 𝑟 = 1, . . . , 𝑠, to
compute the nonmonotonic solution candidates for
𝑦
L
(𝛼).

(4) Evaluate the function 𝑓 for 𝑥R
𝑖

(𝛼), 𝑖 = 1, . . . , 𝑘, and
𝑥
L
𝑗

(𝛼), 𝑗 = 1, . . . , ℓ, including all the 𝑢𝑠 combinations
of the interval boundaries of 𝑥

𝑚

(𝛼) = [𝑥
L
𝑚

(𝛼), 𝑥
R
𝑚

(𝛼)],
𝑚 = 𝑘 + ℓ + 𝑞 + 1, . . . , 𝑛 with the components of
the extreme points (𝑥∗

1,𝑟

, . . . , 𝑥
∗

𝑢,𝑟

), 𝑟 = 1, . . . , 𝑠, to
compute the nonmonotonic solution candidates for
𝑦
R
(𝛼).

(5) Plot all solution candidates in the same diagram.
(6) Finally, starting from the modal point 𝑦 =

𝑓(𝑥
1

, . . . , 𝑥
𝑛

) at 𝛼 = 1, construct the maximum
envelope formed by the possible solution candidates
for 𝛼 → 0 under the condition of convexity.

This extended part of our approach requires a total of
2
𝑞+𝑢+1

+ 2𝑢𝑠 function evaluations.

Example 2. Now, the function 𝑓
2

: R2 → R with

𝑦
2

= 𝑓
2

(𝑥
1

, 𝑥
2

) = 𝑥
2

1

+ 𝑥
2

2

− 5𝑥
1

(14)

shall be evaluated for the two fuzzy numbers from Example 1.
Since

𝜕𝑓
2

𝜕𝑥
1

= 2𝑥
1

− 5,

𝜕𝑓
2

𝜕𝑥
2

= 2𝑥
2

> 0,

(15)

the function 𝑓
2

is nonmonotonic in 𝑥
1

with one (global)
extremum at 𝑥∗

1,1

= 2.5 and (strictly) monotonic increasing
in 𝑥
1

in the domain supp(𝑥
1

) × supp(𝑥
2

) = (0, 5) × (0, 4).
Hence, the extended part of our approach should be applied.
The monotonic solution candidates for 𝑦L

2

(𝛼) are

𝑦
LL
2

(𝛼) = 𝑓
2

(𝑥
L
1

(𝛼) , 𝑥
L
2

(𝛼)) = 8𝛼
2

− 10𝛼,

𝑦
RL
2

(𝛼) = 𝑓
2

(𝑥
R
1

(𝛼) , 𝑥
L
2

(𝛼)) = 13𝛼
2

− 15𝛼,

(16)

and for 𝑦R
2

(𝛼),

𝑦
LR
2

(𝛼) = 𝑓
2

(𝑥
L
1

(𝛼) , 𝑥
R
2

(𝛼)) = 8𝛼
2

− 26𝛼 + 16,

𝑦
RR
2

(𝛼) = 𝑓
2

(𝑥
R
1

(𝛼) , 𝑥
R
2

(𝛼)) = 13𝛼
2

− 31𝛼 + 16.

(17)

The nonmonotonic solution candidate for 𝑦L
2

(𝛼) is

𝑦
1L
2

(𝛼) = 𝑓
2

(𝑥
∗

1,1

, 𝑥
L
2

(𝛼)) = 4𝛼
2

− 6.25, (18)
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and for 𝑦R
2

(𝛼),

𝑦
1R
2

(𝛼) = 𝑓
2

(𝑥
∗

1,1

, 𝑥
R
2

(𝛼)) = 4𝛼
2

− 16𝛼 + 9.75. (19)

We can see from their plots in Figure 2 that, starting from
the modal point at 𝛼 = 1, the left branch of the maximum
envelope is formed by 𝑦

RL
2

for 1 ≥ 𝛼 > 0.83 and by
𝑦
1L
2

for 0.83 ≥ 𝛼 > 0, where the value 0.83 corresponds
to their intersection point. Its right branch, on the other
hand, is entirely formed by 𝑦LR

2

. Hence, the 𝛼-cuts 𝑦
2

(𝛼) =

[𝑦
L
2

(𝛼), 𝑦
R
2

(𝛼)] of 𝑦
2

are

𝑦
L
2

(𝛼) =

{

{

{

4𝛼
2

− 6.25, 0 < 𝛼 ≤ 0.83,

13𝛼
2

− 15𝛼, 0.83 < 𝛼 ≤ 1,

𝑦
R
2

(𝛼) = 8𝛼
2

− 26𝛼 + 16, 0 < 𝛼 ≤ 1.

(20)

With 𝑦L
2

(0) = −6.25, 𝑦L
2

(0.83) = −3.472, 𝑦L
2

(1) = −2 =

𝑦
R
2

(1), and 𝑦R
2

(0) = 16, the membership function of 𝑦
2

yields

𝜇
𝑦

2

(𝑦) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1

4

√4𝑦 + 25, −6.25 < 𝑦 ≤ −3.472,

15

26

+

1

26

√52𝑦 + 225, −3.472 < 𝑦 ≤ −2,

13

8

−

1

8

√8𝑦 + 41, −2 < 𝑦 < 16.

(21)

4. Engineering Application

In order to illustrate the analytical approach in a more
practical context, we consider a linear systemwith one degree
of freedom consisting of a block with mass 𝑚 moving on a
smooth surface as shown in Figure 3. The block is connected
to a wall via a linear spring with spring constant 𝑘. This
system is governed by the following linear, homogeneous
ordinary differential equation of second order with constant
coefficients [7]:

�̈� + 𝜔
2

𝑥 = 0. (22)

Here,

𝜔 = √
𝑘

𝑚

(23)

denotes the natural frequency of the system. The general
solution of (22) is given by

𝑥 (𝑡) = 𝑥
0

cos (𝜔𝑡) +
�̇�
0

𝜔

sin (𝜔𝑡) , (24)

where 𝑥
0

= 𝑥(0) and �̇�
0

= �̇�(0) denote the initial conditions.
We assume 𝑥

0

and 𝜔 to be uncertain, both described
by fuzzy numbers. More specifically, the uncertain initial
position is modeled by the (symmetric) triangular fuzzy
number

𝑥
0

= tfn (1, 0.5, 0.5) cm (25)
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Figure 2: Solution candidates from Example 2.

k
m

x

Figure 3: Mass-spring system.

and the uncertain natural frequency by the (symmetric)
Gaussian fuzzy number

�̃� = gfn (1, 0.05, 0.05) Hz. (26)

Furthermore, we assume �̇�
0

= 0. We are interested in the
uncertain position of the mass after one period (𝑡 = 2𝜋).

Since
𝜕𝑥

𝜕𝑥
0

= cos (2𝜋𝜔) ≥ 0,

𝜕𝑥

𝜕𝜔

= −2𝜋𝑥
0

sin (2𝜋𝜔) ,
(27)

𝑥 is (strictly) monotonic increasing in 𝑥
0

and nonmonotonic
in 𝜔 in the domain supp(𝑥

0

) × supp(�̃�) ∩ R2
+

with an
infinite number of local extrema 𝜔∗

𝑖

= 𝑖/2, 𝑖 ∈ N
0

. Hence,
the extended part of our approach should be applied. The
monotonic solution candidates for 𝑥L(𝛼) are

𝑥
LL
(𝛼) = 𝑥

LR
(𝛼) = (1 − 0.5 (1 − 𝛼)) cos (0.1𝜋√−2 ln (𝛼)) ,

(28)
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Figure 4: Solution candidates for 𝑥(𝛼).

and for 𝑥R(𝛼),

𝑥
RL
(𝛼) = 𝑥

RR
(𝛼) = (1 + 0.5 (1 − 𝛼)) cos (0.1𝜋√−2 ln (𝛼)) .

(29)

The nonmonotonic solution candidates for 𝑥L(𝛼), on the
other hand, are

𝑥
L𝑗
(𝛼) = − (1 − 0.5 (1 − 𝛼)) , 𝑗 = 2ℓ + 1, ℓ ∈ N

0

,

𝑥
L𝑘
(𝛼) = + (1 − 0.5 (1 − 𝛼)) , 𝑘 = 2ℓ + 2, ℓ ∈ N

0

,

(30)

and for 𝑥R(𝛼),

𝑥
R𝑗
(𝛼) = − (1 + 0.5 (1 − 𝛼)) , 𝑗 = 2ℓ + 1, ℓ ∈ N

0

,

𝑥
R𝑘
(𝛼) = + (1 + 0.5 (1 − 𝛼)) , 𝑘 = 2ℓ + 2, ℓ ∈ N

0

.

(31)

We can see from their plots in Figure 4 that the left branch
of the maximum envelope is formed by 𝑥LL = 𝑥

LR and the
right branch by 𝑥R𝑘. Hence, the 𝛼-cuts 𝑥(𝛼) = [𝑥L(𝛼), 𝑥R(𝛼)]
of 𝑥 are

𝑥
L
(𝛼) = (1 − 0.5 (1 − 𝛼)) cos (0.1𝜋√−2 ln (𝛼)) ,

𝑥
R
(𝛼) = 1 + 0.5 (1 − 𝛼) .

(32)

Since 𝑥
L
(𝛼) in (32) is not invertible with respect to 𝛼,

it is not possible to give an analytical expression for the
membership function of 𝑥. However, the 𝛼-cuts and the
membership function are both equivalent representations of
a fuzzy number. The inverted plots of (32) are illustrated in
Figure 5.

1
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0.5

0.25

0
0.25 0.5 0.75 1 1.25 1.5

x (cm)

𝜇
x̃
(x
)

Figure 5: Membership function of 𝑥.

5. Conclusions

We extended our analytical approach from [1] to general,
nonmonotonic functions of independent fuzzy numbers. It
is based on an 𝛼-cut formulation of the extension principle
and allows for the inclusion of parameter uncertainties into
mathematical models.

In further research activities, the influence of interdepen-
dency may be a subject of investigation.
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