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We prove two unique common coupled fixed-point theorems for self maps in symmetric G-fuzzy metric spaces.

1. Introduction and Preliminaries

Mustafa and Sims [1–3] and Naidu et al. [4] demonstrated
that most of the claims concerning the fundamental topo-
logical structure of D-metric introduced by Dhage [5–8] and
hence all theorems are incorrect. Alternatively, Mustafa and
Sims [1, 2] introduced a G-metric space and obtained some
fixed-point theorems in it. Some interesting references in
G-metric spaces are [3, 9–15]. In this paper, we prove two
unique common coupled fixed-point theorems for Jungck
type and for three mappings in symmetric G-fuzzy metric
spaces.

Before giving our main results, we recall some of the basic
concepts and results in G-metric spaces and G-fuzzy metric
spaces.

Definition 1 (see [2]). Let X be a nonempty set and let G :
X × X × X → [0,∞) be a function satisfying the following
properties:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all x, y ∈ X with x /= y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y /= z,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , symmetry
in all three variables,

(G5) G(x, y, z) ≤ G(x, a, a)+G(a, y, z) for all x, y, z, a ∈ X .

Then, the function G is called a generalized metric or a
G-metric on X and the pair (X ,G) is called a G-metric space.

Definition 2 (see [2]). The G-metric space (X ,G) is called
symmetric if G(x, x, y) = G(x, y, y) for all x, y ∈ X .

Definition 3 (see [2]). Let (X ,G) be a G-metric space and let
{xn} be a sequence in X . A point x ∈ X is said to be limit of
{xn} if and only if limn,m→∞G(x, xn, xm) = 0. In this case, the
sequence {xn} is said to be G-convergent to x.

Definition 4 (see [2]). Let (X ,G) be a G-metric space and let
{xn} be a sequence in X . {xn} is called G-Cauchy if and only
if liml,n,m→∞G(xl, xn, xm) = 0. (X ,G) is called G-complete
if every G-Cauchy sequence in (X ,G) is G-convergent in
(X ,G).

Proposition 5 (see [2]). In a G-metric space (X ,G), the
following are equivalent.

(i) The sequence {xn} is G-Cauchy.

(ii) For every ε > 0, there exists N ∈ N such that
G(xn, xm, xm) < ε, for all n,m ≥ N .

Proposition 6 (see [2]). Let (X ,G) be a G-metric space. Then,
the function G(x, y, z) is jointly continuous in all three of its
variables.

Proposition 7 (see [2]). Let (X ,G) be a G-metric space. Then,
for any x, y, z, a ∈ X , it follows that

(i) if G(x, y, z) = 0, then x = y = z,

(ii) G(x, y, z) ≤ G(x, x, y) + G(x, x, z),
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(iii) G(x, y, y) ≤ 2G(x, x, y),

(iv) G(x, y, z) ≤ G(x, a, z) + G(a, y, z),

(v) G(x, y, z) ≤ (2/3)[G(x, a, a) + G(y, a, a) + G(z, a, a)].

Proposition 8 (see [2]). Let (X ,G) be a G-metric space. Then,
for a sequence {xn} ⊆ X and a point x ∈ X , the following are
equivalent:

(i) {xn} is G-convergent to x,

(ii) G(xn, xn, x) → 0 as n → ∞,

(iii) G(xn, x, x) → 0 as n → ∞,

(iv) G(xm, xn, x) → 0 as m,n → ∞.

Recently, Sun and Yang [16] introduced the concept of
G-fuzzy metric spaces and proved two common fixed-point
theorems for four mappings.

Definition 9 (see [16]). A 3-tuple (X ,G,∗) is called a G-
fuzzy metric space if X is an arbitrary nonempty set, ∗ is
a continuous t-norm, and G is a fuzzy set on X3 × (0,∞)
satisfying the following conditions for each t, s > 0:

(i) G(x, x, y, t) > 0 for all x, y ∈ X with x /= y,

(ii) G(x, x, y, t) ≥ G(x, y, z, t) for all x, y, z ∈ X with
y /= z,

(iii) G(x, y, z, t) = 1 if and only if x = y = z,

(iv) G(x, y, z, t) = G(p(x, y, z), t), where p is a permuta-
tion function,

(v) G(x, y, z, t + s) ≥ G(a, y, z, t) ∗ G(x, a, a, s) for all
x, y, z, a ∈ X ,

(vi) G(x, y, z, ·) : (0,∞) → [0, 1] is continuous.

Definition 10 (see [16]). A G-fuzzy metric space (X ,G,∗)
is said to be symmetric if G(x, x, y, t) = G(x, y, y, t) for all
x, y ∈ X and for each t > 0.

Example 11. Let X be a nonempty set and let G be a G-metric
on X . Denote a∗ b = ab for all a, b ∈ [0, 1]. For each t > 0,
G(x, y, z, t) = t/(t + G(x, y, z)) is a G-fuzzy metric on X .

Let (X ,G,∗) be a G-fuzzy metric space. For t > 0, 0 <
r < 1, and x ∈ X , the set BG(x, r, t) = {y ∈ X : G(x, y, y, t) >
1− r} is called an open ball with center x and radius r.

A subset A of X is called an open set if for each x ∈
X , there exist t > 0 and 0 < r < 1 such that BG(x, r, t) ⊆ A.

A sequence {xn} in G-fuzzy metric space X is said to
be G-convergent to x ∈ X if G(xn, xn, x, t) → 1 as n →
∞ for each t > 0. It is called a G-Cauchy sequence if
G(xn, xn, xm, t) → 1 as n,m → ∞ for each t > 0. X is called
G-complete if everyG-Cauchy sequence in X is G-convergent
in X .

Lemma 12 (see [16]). Let (X ,G,∗) be a G-fuzzy metric space.
Then, G(x, y, z, t) is nondecreasing with respect to t for all
x, y, z ∈ X .

Lemma 13 (see [16]). Let (X ,G,∗) be a G-fuzzy metric space.
Then, G is a continuous function on X3 × (0,∞).

Now onwards, we assume the following condition:

lim
t→∞G

(
x, y, z, t

) = 1 ∀x, y, z ∈ X. (P)

Using (P), one can prove the following lemma.

Lemma 14. Let (X ,G,∗) be a G-fuzzy metric space. If there
exists k ∈ (0, 1) such that

min
{
G
(
x, y, z, kt

)
,G(u, v,w, kt)

}

≥ min
{
G
(
x, y, z, t

)
,G(u, v,w, t)

} (1)

for all x, y, z,u, v,w ∈ X and t > 0, then x = y = z and
u = v = w.

Definition 15 (see [17]). Let X be a nonempty set. An
element (x, y) ∈ X × X is called a coupled fixed point of
the mapping F : X × X → X if x = F(x, y) and y = F(y, x).

Definition 16 (see [18]). Let X be a nonempty set. An
element (x, y) ∈ X × X is called

(i) a coupled coincidence point of F : X × X → X and
g : X → X if gx = F(x, y) and g y = F(y, x),

(ii) a common coupled fixed point of F : X×X → X and
g : X → X if x = gx = F(x, y) and y = g y = F(y, x).

Definition 17 (see [18]). Let X be a nonempty set. The
mappings F : X × X → X and g : X → X are called
W-compatible if g(F(x, y)) = F(gx, g y) and g(F(y, x)) =
F(g y, gx) whenever gx = F(x, y) and g y = F(y, x) for some
(x, y) ∈ X × X .

Now, we give our main results.

2. Main Results

Theorem 18. Let (X ,G,∗) be a G-fuzzy metric space with a∗
b = min{a, b} for all a, b ∈ [0, 1] and S : X × X → X and let
f : X → X be mappings satisfying

G
(
S
(
x, y

)
, S(u, v), S(u, v), kt

)

≥ min
{
G
(
f x, f u, f u, t

)
,G
(
f y, f v, f v, t

)} (2)

for all x, y,u, v ∈ X , where 0 ≤ k < 1,

S(X × X) ⊆ f (X) and f (X) is a complete subspace o f X ,

the pair
(
f , S
)
is W-compatible.

(3)

Then S and f have a unique common coupled fixed point
of the form (α,α) in X × X .

Proof. Let x0, y0 ∈ X and denote zn = S(xn, yn) =
f xn+1, pn = S(yn, xn) = f yn+1,n = 0, 1, 2, . . .. Let dn(t) =
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G(zn, zn+1, zn+1, t), en(t) = G(pn, pn+1, pn+1, t). From (2), we
have

dn+1(kt) = G(zn+1, zn+2, zn+2, kt)

= G
(
S
(
xn+1, yn+1

)
, S
(
xn+2, yn+2

)
, S
(
xn+2, yn+2

)
, kt
)

≥ min
{
G(zn, zn+1, zn+1, t),G

(
pn, pn+1, pn+1, t

)}

≥ min{dn(t), en(t)}.
(4)

Also,

en+1(kt) = G
(
pn+1, pn+2, pn+2, kt

)

= G
(
S
(
yn+1, xn+1

)
, S
(
yn+2, xn+2

)
, S
(
yn+2, xn+2

)
, kt
)

≥ min
{
G
(
pn, pn+1, pn+1, t

)
,G(zn, zn+1, zn+1, t)

}

≥ min{en(t),dn(t)}.
(5)

Thus, min{dn+1(kt), en+1(kt)} ≥ min{dn(t), en(t)}. Hence,

min{dn(t), en(t)}

≥ min
{
dn−1

(
t

k

)
, en−1

(
t

k

)}

≥ min
{
dn−2

(
t

k2

)
, en−2

(
t

k2

)}

...

≥ min
{
d0

(
t

kn

)
, e0

(
t

kn

)}

= min
{
G
(
z0, z1, z1,

t

kn

)
,G
(
p0, p1, p1,

t

kn

)}
.

(6)

For any positive integer n and fixed positive integer p, we
have

G
(
zn, zn+p, zn+p, t

)

≥ G

(

zn+p−1, zn+p, zn+p,
t

p

)

∗G

(

zn+p−2, zn+p−1, zn+p−1,
t

p

)

∗ · · · ∗G

(

zn, zn+1, zn+1,
t

p

)

≥ min

{

G

(

z0, z1, z1,
t

pkn+p−1

)

,G

(

p0, p1, p1,
t

pkn+p−1

)}

∗min

{

G

(

z0, z1, z1,
t

pkn+p−2

)

,G

(

p0, p1, p1,
t

pkn+p−2

)}

∗ · · · ∗min

{

G

(

z0, z1, z1,
t

pkn

)

,G

(

p0, p1, p1,
t

pkn

)}

.

(7)

Letting n → ∞ and using (P), we get

lim
n→∞G

(
zn, zn+p, zn+p, t

)
≥ 1∗ 1∗ · · · ∗ 1 = 1. (8)

Hence, limn→∞G(zn, zn+p, zn+p, t) = 1. Thus, {zn} is G-
Cauchy in X . Similarly, we can show that {pn} is G-Cauchy
in X . Since f (X) is G-complete, {zn} and {pn} converge to
some α and β in f (X), respectively. Hence, there exist x and
y in X such that α = f x, β = f y:

G
(
zn, S

(
x, y

)
, S
(
x, y

)
, kt
)

= G
(
S
(
xn, yn

)
, S
(
x, y

)
, S
(
x, y

)
, kt
)

≥ min
{
G
(
zn−1, f x, f x, t

)
,G
(
pn−1, f y, f y, t

)}
.

(9)

Letting n → ∞, we get

G
(
f x, S

(
x, y

)
, S
(
x, y

)
, kt
) ≥ min{1, 1} = 1. (10)

Hence, S(x, y) = f x. Similarly, it can be shown that S(y, x) =
f y. Since ( f , S) is W-compatible, we have

f α = f f x = f
(
S
(
x, y

)) = S
(
f x, f y

) = S
(
α,β

)
,

f β = f f y = f
(
S
(
y, x
)) = S

(
f y, f x

) = S
(
β,α

)
.

G
(
zn, f α, f α, kt

)

= G
(
S
(
xn, yn

)
, S
(
α,β

)
, S
(
α,β

)
, kt
)

≥ min
{
G
(
zn−1, f α, f α, t

)
,G
(
pn−1, f β, f β, t

)}
.

(11)

Letting n → ∞, we get

G
(
α, f α, f α, kt

) ≥ min
{
G
(
α, f α, f α, t

)
,G
(
β, f β, f β, t

)}
.

(12)

Similarly, we can show that

G
(
β, f β, f β, kt

) ≥ min
{
G
(
α, f α, f α, t

)
,G
(
β, f β, f β, t

)}
.

(13)

Thus,

min
{
G
(
α, f α, f α, kt

)
,G
(
β, f β, f β, kt

)}

≥ min
{
G
(
α, f α, f α, t

)
,G
(
β, f β, f β, t

)}
.

(14)

From Lemma 14, we have f α = α and f β = β. Thus,
α = f α = S(α,β) and β = f β = S(β,α). Hence, (α,β) is
a common coupled fixed point of S and f .

Suppose (α1,β1) is another common coupled fixed point
of S and f :

G
(
α,α1,α1, kt

) = G
(
S
(
α,β

)
, S
(
α1,β1), S

(
α1,β1), kt

)

≥ min
{
G
(
α,α1,α1, t

)
,G
(
β,β1,β1, t

)}
.

(15)

Similarly,

G
(
β,β1,β1, kt

) = G
(
S
(
β,α

)
, S
(
β1,α1), S

(
β1,α1), kt

)

≥ min
{
G
(
α,α1,α1, t

)
,G
(
β,β1,β1, t

)}
.

(16)
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Thus,

min
{
G
(
α,α1,α1, kt

)
,G
(
β,β1,β1, kt

)}

≥ min
{
G
(
α,α1,α1, t

)
,G
(
β,β1,β1, t

)}
.

(17)

From Lemma 14, α1 = α and β1 = β. Thus, (α,β) is the
unique common coupled fixed point of S and f . Now, we
will show that α = β:

G
(
α,α,β, kt

) = G
(
S
(
α,β

)
, S
(
α,β

)
, S
(
β,α

)
, kt
)

≥ min
{
G
(
α,α,β, t

)
,G
(
β,β,α, t

)}
,

G
(
α,β,β, kt

) = G
(
S
(
α,β

)
, S
(
β,α

)
, S
(
β,α

)
, kt
)

≥ min
{
G
(
α,β,β, t

)
,G
(
β,α,α, t

)}
.

(18)

Thus,

min
{
G
(
α,α,β, kt

)
,G
(
α,β,β, kt

)}

≥ min
{
G
(
α,α,β, t

)
,G
(
α,β,β, t

)}
.

(19)

From Lemma 14, we have α = β. Thus, α is a common fixed
point of S and f , that is, α = f α = S(α,α). Suppose α1 is
another common fixed point of S and f :

G
(
α1,α,α, t

) = G
(
S
(
α1,α1), S(α,α), S(α,α), t

)

≥ min
{
G
(
α1,α,α,

t

k

)
,G
(
α1,α,α,

t

k

)}

≥ G
(
α1,α,α,

t

k2

)

...

≥ G
(
α1,α,α,

t

kn

)
−→ 1 as n −→ ∞.

(20)

Hence, α1 = α. Thus, S and f have a unique common
coupled fixed point of the form (α,α).

Finally, we prove a common coupled fixed-point theorem
for three mappings in symmetric G-fuzzy metric spaces.

Theorem 19. Let (X ,G,∗) be a symmetric G-complete fuzzy
metric space with a ∗ b = min{a, b} for all a, b ∈ [0, 1] and
let S,T ,R : X × X → X be mappings satisfying

G
(
S
(
x, y

)
,T(u, v),R

(
p, q
)
, kt
)

≥ min
{
G
(
x,u, p, t

)
,G
(
y, v, q, t

)
,G
(
x, x, S

(
x, y

)
, t
)
,

G(u,u,T(u, v), t),G
(
p, p,R

(
p, q
)
, t
)}

(21)

for all x, y,u, v, p, q ∈ X , where 0 ≤ k < 1. Then, there exists
(x, y) ∈ X × X such that

x = S
(
x, y

) = T
(
x, y

) = R
(
x, y

)
, (22)

y = S
(
y, x
) = T

(
y, x
) = R

(
y, x
)
. (23)

Or

S, T , and R have a unique common coupled fixed point

o f the form (x, x) in X × X.
(24)

Proof. Let x0, y0 ∈ X . Define the sequences {xn} and {yn}
in X as follows: x3n+1 = S(x3n, y3n), y3n+1 = S(y3n, x3n);
x3n+2 = T(x3n+1, y3n+1), y3n+2 = T(y3n+1, x3n+1); x3n+3 =
R(x3n+2, y3n+2), y3n+3 = R(y3n+2, x3n+2), n = 0, 1, 2, . . ..
Suppose x3n+1 = x3n for some n. Then, S(x, y) = x, where
x = x3n, y = y3n. Suppose T(x, y) /=R(x, y). Then,

G
(
x,T

(
x, y

)
,R
(
x, y

)
, kt
)

= G
(
S
(
x, y

)
,T
(
x, y

)
,R
(
x, y

)
, kt
)

≥ min
{

1, 1, 1,G
(
x, x,T

(
x, y

)
, t
)
,G
(
x, x,R

(
x, y

)
, t
)}

≥ G
(
x,T

(
x, y

)
,R
(
x, y

)
, t
)
.

(25)

It is a contradiction. Hence, T(x, y) = R(x, y). From (25) and
since X is symmetric,

G
(
x,T

(
x, y

)
,T
(
x, y

)
, kt
) ≥ G

(
x, x,T

(
x, y

)
, t
)

= G
(
x,T

(
x, y

)
,T
(
x, y

)
, t
)
.

(26)

From Lemma 14, we have T(x, y) = x. Thus, S(x, y) =
T(x, y) = R(x, y) = x. Similarly, if x3n+1 = x3n+2 or
x3n+2 = x3n+3, then also we can show that S(x, y) = T(x, y) =
R(x, y) = x for some x, y in X . Similarly, it can be shown that
if y3n = y3n+1 or y3n+1 = y3n+2 or y3n+2 = y3n+3 then there
exists (x, y) ∈ X × X such that

S
(
y, x
) = T

(
y, x
) = R

(
y, x
) = y. (27)

Now, assume that xn /= xn+1 and yn /= yn+1 for all n. Write
dn(t) = G(xn, xn+1, xn+2, t) and en(t) = G(yn, yn+1, yn+2, t):

d3n(kt)

= G(x3n, x3n+1, x3n+2, kt)

= G
(
S
(
x3n, y3n

)
,T
(
x3n+1, y3n+1

)
,R
(
x3n−1, y3n−1

)
, kt
)

≥ min{d3n−1(t), e3n−1(t),G(x3n, x3n, x3n+1, t),

G(x3n+1, x3n+1, x3n+2, t),G(x3n−1, x3n−1, x3n, t)}
≥ min{d3n−1(t), e3n−1(t),d3n(t),d3n(t),d3n−1(t)}.

(28)

Thus, d3n(kt) ≥ min{d3n−1(t), e3n−1(t)}. Similarly, we have
e3n(kt) ≥ mind3n−1(t), e3n−1(t).

Thus,

min{d3n(kt), e3n(kt)} ≥ min{d3n−1(t), e3n−1(t)}. (29)

Similarly, we can show that

min{d3n+1(kt), e3n+1(kt)} ≥ min{d3n(t), e3n(t)},
min{d3n+2(kt), e3n+2(kt)} ≥ min{d3n+1(t), e3n+1(t)}.

(30)
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Thus,

min{dn+1(kt), en+1(kt)} ≥ min{dn(t), en(t)}. (31)

Hence

min{dn(t), en(t)}

≥ min
{
dn

(
t

k

)
, en

(
t

k

)}

≥ min
{
dn

(
t

k2

)
, en

(
t

k2

)}

...

≥ min
{
d0

(
t

kn

)
, e0

(
t

kn

)}

= min
{
G
(
x0, x1, x2,

t

kn

)
,G
(
y0, y1, y2,

t

kn

)}
.

(32)

Thus,

G(xn, xn+1, xn+2, t)

≥ min
{
G
(
x0, x1, x2,

t

kn

)
,G
(
y0, y1, y2,

t

kn

)}
.

(33)

From (G3), we have

G(xn, xn, xn+1, t)

≥ G(xn, xn+1, xn+2, t)

≥ min
{
G
(
x0, x1, x2,

t

kn

)
,G
(
y0, y1, y2,

t

kn

)}
.

(34)

As in Theorem 18, we can show that {xn} and {yn} are G-
Cauchy sequences in X . Since X is G-complete, there exist
x, y ∈ X such that xn → x and yn → y :

G
(
S
(
x, y

)
, x3n+2, x3n+3, kt

)

= G
(
S
(
x, y

)
,T
(
x3n+1, y3n+1

)
,R
(
x3n+2, y3n+2

)
, kt
)

≥ min
{
G(x, x3n+1, x3n+2, t),G

(
y, y3n+1, y3n+2, t

)
,

G
(
x, x, S

(
x, y

)
, t
)
,G(x3n+1, x3n+1, x3n+2, t),

G(x3n+2, x3n+2, x3n+3, t)}.
(35)

Letting n → ∞,

G
(
S
(
x, y

)
, x, x, kt

) ≥ min
{

1, 1,G
(
x, x, S

(
x, y

)
, t
)
, 1, 1

}

= G
(
x, x, S

(
x, y

)
, t
)
.

(36)

From this, we have S(x, y) = x. As in the first part of proof,
we can show that S(x, y) = T(x, y) = R(x, y) = x. Similarly,
it can be shown that S(y, x) = T(y, x) = R(y, x) = y.
Thus, (x, y) is a common coupled fixed point of S, T , and

R. Suppose (x1, y1) is another common coupled fixed point
of S, T , and R. Consider

G
(
x, x, x1, kt

) = G
(
S
(
x, y

)
,T
(
x, y

)
,R
(
x1, y1), kt

)

≥ min
{
G
(
x, x, x1, t

)
,G
(
y, y, y1, t

)
, 1, 1, 1

}

= min
{
G
(
x, x, x1, t

)
,G
(
y, y, y1, t

)}
.

(37)

Also,

G
(
y, y, y1, kt

) = G
(
S
(
y, x
)
,T
(
y, x
)
,R
(
y1, x1), kt

)

≥ min
{
G
(
x, x, x1, t

)
,G
(
y, y, y1, t

)
, 1, 1, 1

}

= min
{
G
(
x, x, x1, t

)
,G
(
y, y, y1, t

)}
.

(38)

Thus,

min
{
G
(
x, x, x1, kt

)
,G
(
y, y, y1, kt

)}

≥ min
{
G
(
x, x, x1, t

)
,G
(
y, y, y1, t

)}
.

(39)

From Lemma 14, we have x1 = x and y1 = y. Thus, (x, y) is
the unique common coupled fixed point of S, T , and R. Now,
we will show that x = y. Consider

G
(
x, x, y, kt

) = G
(
S
(
x, y

)
,T
(
x, y

)
,R
(
y, x
)
, kt
)

≥ min
{
G
(
x, x, y, t

)
G
(
y, y, x, t

)
, 1, 1, 1

}

= G
(
x, x, y, t

)
.

(40)

Hence, x = y. Thus, S, T , and R have a unique common
coupled fixed point of the form (x, x).
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