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Functional link-based neural network models were applied to predict opencast mining machineries noise. The paper analyzes the
prediction capabilities of functional link neural network based noise prediction models vis-à-vis existing statistical models. In
order to find the actual noise status in opencast mines, some of the popular noise prediction models, for example, ISO-9613-2,
CONCAWE, VDI, and ENM, have been applied in mining and allied industries to predict the machineries noise by considering
various attenuation factors. Functional link artificial neural network (FLANN), polynomial perceptron network (PPN), and
Legendre neural network (LeNN) were used to predict the machinery noise in opencast mines. The case study is based on data
collected from an opencast coal mine of Orissa, India. From the present investigations, it could be concluded that the FLANN
model give better noise prediction than the PPN and LeNN model.

1. Introduction

At the present time, owing to the improvements in tech-
nology through superior energy competence, higher labor
output, continuous production methods, and operating
flexibility, automation has also advanced rapidly in open
and underground pits together with mineral processing
plants. In parallel to this improvement, sources of noise and
ambient noise at work place in the mining industry have
increased significantly. In general, noise is generated from
all most all the opencast mining operations from different
fixed, mobile, and impulsive sources, thereby becoming an
integral part of the mining environment. With increased
mechanization, the problem of noise has got accentuated in
opencast mines. Prolonged exposure of miners to the high
levels of noise can cause noise-induced hearing loss besides
several nonauditory health effects [1]. The impact of noise
in opencast mines depends upon the sound power level
of the noise generators, prevailing geomining conditions
and the meteorological parameters of the mines [2–4]. The
noise levels need to be studied as an integrated effect of
the above parameters. In mining conditions the equipment

conditions and environment continuously change as the
mining activity progresses. Depending on their placement,
the overall mining noise emanating from the mines varies in
quality and level. Thus, for environmental noise prediction
models, the noise level at any receiver point needs to be the
resultant sound pressure level of all the noise sources.

The need for accurately predicting the level of sound
emitted in opencast mines is well established. Some of
the noise forecasting models used extensively in Europe
are those of the German draft standard VDI-2714 outdoor
sound propagation and environmental noise model (ENM)
of Australia [5]. These models are generally used to predict
noise in petrochemical complexes, and mines. The algorithm
used in these models rely for a greater part on interpolation
of experimental data which is a valid and useful technique,
but their applications are limited to sites which are more or
less similar to those for which the experimental data were
assimilated.

A number of models were developed and extensively used
for the assessment of sound pressure level and their atten-
uation around industrial complexes. Generally, in Indian
mining industry, environmental noise model developed by
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Table 1: Simulation study of shovel noise.

Distance from the
source (meters)

Measured field
data (dBA)

Prediction result (dBA) Average percentage error (dBA)

VDI PPN FLANN LeNN PPN FLANN LeNN

1 102.3000 95.6919 74.1198 88.6731 81.4871

7.03 5.68 8.42

2 102.1000 95.4828 74.1198 94.3428 81.4871

3 98.6000 91.9738 74.1198 94.5178 81.4871

4 98.2000 91.5648 74.1198 89.4572 81.4871

5 97.5000 90.8559 74.1198 87.9020 81.4871

6 97.5000 90.8469 85.8609 96.5394 94.5712

7 96.7000 90.0380 85.8609 90.3449 94.5712

8 95.2000 88.5291 85.8609 93.3190 94.5712

9 93.3000 86.6202 85.8609 94.0383 94.5712

10 92.4000 85.7113 85.8609 94.0383 94.5712

11 91.5000 84.8025 85.8609 87.6493 94.5712

12 91.5000 84.7937 85.8609 88.3686 94.5712

13 91.3000 84.5848 85.8609 85.2195 94.5712

14 90.4000 83.6760 85.8609 91.4140 94.5712

15 88.8000 82.0672 76.5756 85.3685 85.3813

16 88.4000 81.6585 76.5756 85.3685 85.3813

17 87.9000 81.1497 76.5756 88.5889 85.3813

18 87.1000 80.3410 76.5756 88.4139 85.3813

19 86.7000 79.9323 76.5756 87.6947 85.3813

20 86.3000 79.5236 76.5756 87.6947 85.3813

21 85.7000 78.9149 76.5756 85.1287 85.3813

22 85.2000 78.4063 74.3142 84.4095 85.3813

23 85.3000 78.4976 74.3142 84.4095 85.3813

24 85.5000 78.6890 73.2126 81.1891 85.3813

25 85.5000 78.6804 73.2126 80.1264 82.0894

26 85.3000 78.4718 75.3380 81.6816 82.0894

27 84.7000 77.8632 71.4890 81.4353 82.0894

28 84.2000 77.3547 72.2342 81.6103 82.7253

29 83.8000 76.9461 72.2342 82.3295 82.9287

30 82.7000 75.8376 72.2342 82.3295 82.9287

RTA group, Australia is mostly used to predict noise [4, 6].
ENM was used to predict sound pressure level in mining
complexes at Moonidih Project in Jharia Coalfield, Dhanbad,
India [6]. The applied model output was represented as
noise contours. The application of different noise prediction
models was studied for various mines and petrochemical
complexes and it was reported that VDI2714 model was the
simplest and least complex model vis-à-vis other models
[5]. VDI2714 and ISO (1996) noise prediction models were
used in Assiut cement plant, Assiut cement quarry and El-
Gedida mine at El-Baharia oasis of Egypt to predict noise.
From the study, it was concluded that the prediction models
could be used to identify the safe zones with respect to
the noise level in mining and industrial plants. It was also
inferred that the VDI2714 model is the simplest model for
prediction of noise in mining complexes and workplace [7].
Air attenuation model was developed for noise prediction in
limestone quarry and mines of Ireland. The model was used
to predict attenuation in air due to absorption [8].

All the noise prediction models treat noise as a function
of distance, sound power level, different form of attenuations

such as geometrical absorptions, barrier effects, ground
topography. Generally, these parameters are measured in the
mines and best fitting models are applied to predict noise.
Mathematical models are generally complex and cannot be
implemented in real time systems. Additionally, they fail
to predict the future parameters from current and past
measurements. It has been seen that noise prediction is a
nonstationary process and soft-computing techniques like
fuzzy system, adaptive neural network-based fuzzy inference
system (ANFIS), neural network, and so forth, have been
tested for nonstationary time-series prediction nearly for two
decades. There is a scope of using different soft computing
techniques: fuzzy logic, artificial neural networks, radial
basis function (RBF) and so forth, for noise prediction in
mines. In comparison to other soft computing techniques,
functional link artificial neural network (FLANN) and
Legendre Neural Network (LeNN) has less computational
cost and easily implemented in hardware applications. This is
the motivation on which the present research work is based.

In this paper, an attempt has been made to develop three
types of functional link artificial neural network models
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Figure 1: System architecture of function link based artificial neural networks.

(FLANN, PPN, and LeNN) for noise prediction of machiner-
ies used in Balaram opencast coal mine of Talcher, Orissa,
India. The data assembled through surveys, measurement or
knowledge to predict sound pressure level in mines is often
imprecise or speculative. Since neural network-based systems
are good predictive tools for imprecise and uncertainty
information; therefore, the proposed approach would be the

most appropriate technique for modeling the prediction of
sound pressure level in opencast coal mines.

2. VDI-2714 Noise Prediction Model

In 1976, the VDI draft code 2714 “outdoor sound propa-
gation” was issued by the VDI committee on noise reduction
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Table 2: Simulation study of dumper noise.

Distance from the
source (meters)

Measured field
data (dBA)

Prediction result (dBA) Average percentage error (dBA)

VDI PPN FLANN LeNN PPN FLANN LeNN

1 102.4000 95.7919 74.1198 88.6731 81.4871

2 101.3000 94.6828 74.1198 93.0404 81.4871

3 98.2000 91.5738 74.1198 94.5178 81.4871

4 97.7000 91.0648 74.1198 89.4572 81.4871

5 97.2000 90.5559 74.1198 87.9020 81.4871

6 96.8000 90.1469 85.8609 96.5394 94.5712

7 94.2000 87.5380 74.1198 82.7701 81.4871

8 94.1000 87.4291 85.8609 93.3190 94.5712

9 93.6000 86.9202 85.8609 94.0383 94.5712

10 93.2000 86.5113 85.8609 94.0383 94.5712

11 93.2000 86.5025 85.8609 84.6752 94.5712

12 92.5000 85.7937 85.8609 85.3944 94.5712

13 92.2000 85.4848 85.8609 86.3534 94.5712

14 90.6000 83.8760 85.8609 88.4398 94.5712

15 89.7000 82.9672 76.5756 85.3685 85.3813 7.27 5.77 8.20

16 88.3000 81.5585 76.5756 85.3685 85.3813

17 88.2000 81.4497 76.5756 88.5889 85.3813

18 87.6000 80.8410 76.5756 88.4139 85.3813

19 87.1000 80.3323 76.5756 87.6947 85.3813

20 86.8000 80.0236 76.5756 87.6947 85.3813

21 86.5000 79.7149 76.5756 85.1287 85.3813

22 86.2000 79.4063 74.3142 84.4095 85.3813

23 85.8000 78.9976 74.3142 84.4095 85.3813

24 85.6000 78.7890 73.2126 81.1891 85.3813

25 84.8000 77.9804 73.2126 83.1006 82.0894

26 84.2000 77.3718 75.3380 84.6557 82.0894

27 84.2000 77.3632 71.4890 81.4353 82.0894

28 83.7000 76.8547 72.0592 81.6103 82.7253

29 83.4000 76.5461 72.2342 82.3295 82.9287

30 82.8000 75.9376 72.2342 82.3295 82.9287

[5]. The sound pressure level at an environmental point is
calculated from the following equation (1)

LP dB(A) =
log∑

all sources

[
LW + K1 − 10 log

(
4πR2

)
+ 3 dB

−K2 − K3 − K4 − K5 − K6 − K7],
(1)

Lw: source power level re 10−12 watts, K1: source directivity
index, −10 log(4πR2): geometric spreading term including
infinite hard plane coinciding with the source, R: source to
receiver distance, K2: atmospheric attenuation = 10 log (1 +
0.0015R) dB(A), K3: attenuation due to meteorological con-

ditions = [(12.5/R2) + 0.2]−1 dB(A), K4: ground effects =
10 log [3 + (R/160)] − K2 − K3dB(A), K5: barrier value (0–
10) = 10 log (3 + 20d) dB(A), d: barrier path difference, K6:
attenuation due to woodland areas, K7: attenuation due to
built-up areas.

3. Introduction to Functional Link-Based
Artificial Neural Network

Neural network (NN) represents an important paradigm
for classifying patterns or approximating complex non-
linear process dynamics. These properties clearly indicate
that NN exhibit some intelligent behavior, and are good
candidate models for nonlinear processes, for which no
perfect mathematical model is available. Neural networks
have been a powerful tool for their applications for more
than last two decades [9–13]. Multilayer perceptron (MLP),
radial basis function (RBF), Support vector machine (SVM)
and so forth, are the types of Neural Network Model,
where these models have better prediction competence
with high computational cost. Generally, these models have
high computational cost due to the availability of hidden
layer. To minimize the computational cost, structures like,
polynomial perceptron network (PPN) [14], functional link
artificial neural network (FLANN) [15–18], Legendre neural
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Table 3: Simulation study of grader noise.

Distance from the
source (meters)

Measured field
data (dBA)

Prediction result (dBA) Average percentage error (dBA)

VDI PPN FLANN LeNN PPN FLANN LeNN

1 105.3000 98.6919 74.1198 89.9755 81.4871

2 103.4000 96.7828 74.1198 95.4768 81.4871

3 101.2000 94.5738 74.1198 92.6776 81.4871

4 98.7000 92.0648 74.1198 89.4572 81.4871

5 97.2000 90.5559 74.1198 87.9020 81.4871

6 95.5000 88.8469 74.1198 85.9905 81.4871

7 94.3000 87.6380 74.1198 82.7701 81.4871

8 94.1000 87.4291 85.8609 93.3190 94.5712

9 93.7000 87.0202 85.8609 94.0383 94.5712

10 93.2000 86.5113 85.8609 94.0383 94.5712

11 92.6000 85.9025 85.8609 87.6493 94.5712

12 91.8000 85.0937 85.8609 88.3686 94.5712

13 90.4000 83.6848 85.8609 88.1936 94.5712

14 88.6000 81.8760 85.8609 91.4140 94.5712

15 88.5000 81.7672 76.5756 85.3685 85.3813 9.56 6.15 9.76

16 88.2000 81.4585 76.5756 85.3685 85.3813

17 87.9000 81.1497 76.5756 88.5889 85.3813

18 87.3000 80.5410 76.5756 88.4139 85.3813

19 86.5000 79.7323 76.5756 87.6947 85.3813

20 85.8000 79.0236 76.5756 87.6947 85.3813

21 85.4000 78.6149 76.5756 85.1287 85.3813

22 85.1000 78.3063 74.3142 84.4095 85.3813

23 84.6000 77.7976 74.3142 84.4095 85.3813

24 84.2000 77.3890 73.2126 81.1891 85.3813

25 83.8000 76.9804 73.2126 83.1006 82.0894

26 83.2000 76.3718 63.5968 74.1068 66.3679

27 82.9000 76.0632 71.4890 81.4353 82.0894

28 82.5000 75.6547 60.3181 71.0614 67.0982

29 82.1000 75.2461 60.3181 71.7806 67.3327

30 81.8000 74.9376 60.3181 71.7806 67.3327

network (LeNN) [19, 20] were proposed. In this paper,
three types of functional based artificial neural networks
have been applied to predict mining machinery noise. These
include polynomial perceptron network (PPN), functional
link artificial neural network (FLANN), and Legendre neural
network (LeNN).

In general, the functional link-based neural network
models were single-layer ANN structure possessing higher
rate of convergence and lesser computational load than
those of an MLP structure. The behavior and mapping
ability of a PPN and its application to channel equalization
is reported by Xiang et al. (1994) [14]. The mathematical
expression and computational calculation is evaluated as
per MLP. Figure 1(a) represents the structure of PPN. Patra
originally proposed functional link artificial neural network
(FLANN), and it is a novel single-layer ANN structure
capable of forming arbitrarily complex decision regions
by generating nonlinear decision boundaries [15–18]. In

FLANN, the hidden layers are removed. Further, the FLANN
structure offers less computational complexity and higher
convergence speed than those of an MLP because of its
single-layer structure. The FLANN structure is depicted in
Figure 1(b). Here, the functional expansion block makes use
of a functional model comprising a subset of orthogonal sin
and cos basis functions and the original pattern along with its
outer products. For example, considering a two-dimensional
input pattern X = [x1x2]T . The enhanced pattern is
obtained by using the trigonometric functions as X∗ =
[x1 cos(πx1) sin(πx1) · · · x2 cos(πx2) sin(πx2) · · · x1x2]T

which is then used by the network for the equalization
purpose. The BP algorithm, which is used to train the
network, becomes very simple because of absence of any
hidden layer. Justification for the use of the trigonometric
functions in the FLANN model is provided in [15–18].

Structure of the Legendre neural network [19, 20]
(LeNN) (Figure 1(c)) is similar to FLANN. In contrast
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Table 4: Simulation study of tipper noise.

Distance from the
source (meters)

Measured field
data (dBA)

Prediction result (dBA) Average percentage error (dBA)

VDI PPN FLANN LeNN PPN FLANN LeNN

1 100.9000 94.2919 74.1198 85.6989 81.4871

2 99.7000 93.0828 74.1198 93.0404 81.4871

3 98.6000 91.9738 74.1198 94.5178 81.4871

4 97.5000 90.8648 74.1198 92.4313 81.4871

5 96.5000 89.8559 74.1198 87.9020 81.4871

6 96.2000 89.5469 85.8609 96.5394 94.5712

7 95.8000 89.1380 85.8609 93.3190 94.5712

8 94.8000 88.1291 85.8609 93.3190 94.5712

9 94.3000 87.6202 85.8609 94.0383 94.5712

10 93.7000 87.0113 85.8609 91.0641 94.5712

11 92.8000 86.1025 85.8609 84.6752 94.5712

12 90.6000 83.8937 85.8609 88.3686 94.5712

13 89.5000 82.8848 85.8609 88.1936 94.5712

14 88.4000 81.6760 74.1198 80.8651 81.4871

15 86.8000 80.0672 64.8344 74.8196 70.1930 13.59 4.36 10.03

16 86.2000 79.4585 64.8344 74.8196 70.1930

17 85.8000 79.0497 64.8344 78.0400 70.1930

18 85.2000 78.4410 64.8344 77.8650 70.1930

19 85.2000 78.4323 64.8344 77.1458 70.1930

20 84.7000 77.9236 64.8344 77.1458 70.1930

21 84.5000 77.7149 64.8344 74.5798 70.1930

22 83.8000 77.0063 62.5730 73.8606 70.1930

23 83.5000 76.6976 62.5730 73.8606 70.1930

24 83.5000 76.6890 61.4715 70.6402 70.1930

25 83.2000 76.3804 61.4715 72.5517 66.3679

26 82.8000 75.9718 63.5968 74.1068 66.3679

27 82.6000 75.7632 59.7479 70.8864 66.3679

28 82.2000 75.3547 60.3181 71.0614 67.0982

29 82.2000 75.3461 60.3181 71.7806 67.3327

30 82.2000 75.3376 72.2342 82.3295 82.9287

to FLANN, in which trigonometric functions are used in
the functional expansion, LeNN uses Legendre orthogonal
functions. LeNN offers faster training compared to FLANN.
The performance of this model may vary from problem to
problem. The Legendre polynomials are denoted by Ln(X),
where n is the order and −1 < x < 1 is the argument
of the polynomial. The zero and the first-order Legendre
polynomials are, respectively, given by L0(x) = 1 and
L1(x) = x. The higher order polynomials are given by
L2(x) = 1/2(3x2 − 1), L3(x) = 1/2(5x3 − 3x) and so
forth. Polynomials are generated by using the following
mathematical expression:

Ln+1(x) = 1
n + 1

[(2n + 1)xLn(x)− nLn−1(x)]. (2)

Similar to FLANN, the two-dimensional input pattern
X = [x1x2]T is enhanced to a seven dimensional pattern

by Legendre functional expansion Xe = [1,L1(x1),L2(x1),
L3(x1),L1(x2),L2(x2),L3(x2)]. For Legendre neural network,
the training is carried out in the same manner as FLANN
and PPN. In all models, supervised learning is used. As in
normal artificial neural network techniques, the presence
of hidden layers increases the complexity in the real-time
system, therefore, FLANN and LeNN is suitably used at here
due to less computational cost.

4. Development of Functional Link
Artificial Neural Network Based-Noise
Prediction Model

The functional link artificial neural network-based noise
prediction models consist of two input parameters: sound
power level (1xk) and distance (2xk). The inputs patterns
are 1x1(k), 1x2(k), 1x3(k) · · · 1xn(k) ∈ R, 2x1(k), 2x2(k),
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Make the functional block (Legendre
NN) as

Xi = [1, x1,L1(x1), x2,L1(x2), . . .]

where L1(x) = 1/2(3x2 − 1)

L2(x) = 1/2(5x3 − 3x) · · ·

Figure 2: Systematic algorithm of functional based neural network based noise prediction models.

2x3(k) · · · 2xn(k) and the desired output patterns are: d1(k),
d2(k), d3(k) · · ·dn(k) ∈ R. During training period, the
desired network output was calculated with VDI-2714 noise
prediction model. Since the procedures of these three models
were similar; therefore, one algorithm is presented here
to emphasize the development of functional-based neural
network-based noise prediction models. Figure 2 graphically
represent the algorithm of functional-based neural network-
based noise prediction models.

Step 1. Initialize the inputs distance = x1,i, (i = 1, . . . ,n),
sound power level = x2, j ( j = 1, . . . ,m), where n and m

are the number of input pattern and an error tolerance
parameter ε > 0. The dimension of m and n should be
same.

Step 2. Randomly select the initial values of the weight
vectors wi, for i = 1, 2, . . . l, where “i” is the number of
functional elements.

Step 3 (Initialization). All the weights wi were initialized to
random number and given as wi(0)

wi ←− wi(0). (3)
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Table 5: Simulation study of dozer noise.

Distance from the
source (meters)

Measured field
data (dBA)

Prediction result (dBA) Average percentage error (dBA)

VDI PPN FLANN LeNN PPN FLANN LeNN

1 100.5000 93.8919 74.1198 85.6989 81.4871

2 100.2000 93.5828 74.1198 93.0404 81.4871

3 98.2000 91.5738 74.1198 94.5178 81.4871

4 97.5000 90.8648 74.1198 92.4313 81.4871

5 96.7000 90.0559 74.1198 87.9020 81.4871

6 95.4000 88.7469 74.1198 85.9905 81.4871

7 94.8000 88.1380 85.8609 93.3190 94.5712

8 94.2000 87.5291 85.8609 93.3190 94.5712

9 93.6000 86.9202 85.8609 94.0383 94.5712

10 92.5000 85.8113 85.8609 94.0383 94.5712

11 91.8000 85.1025 85.8609 87.6493 94.5712

12 89.6000 82.8937 74.1198 77.8197 81.4871

13 89.3000 82.5848 85.8609 88.1936 94.5712

14 88.8000 82.0760 85.8609 91.4140 94.5712

15 88.2000 81.4672 76.5756 85.3685 85.3813 10.94 6.32 9.53

16 87.9000 81.1585 76.5756 85.3685 85.3813

17 87.4000 80.6497 76.5756 88.5889 85.3813

18 86.6000 79.8410 76.5756 88.4139 85.3813

19 85.5000 78.7323 64.8344 77.1458 70.1930

20 85.5000 78.7236 76.5756 87.6947 85.3813

21 84.8000 78.0149 64.8344 74.5798 70.1930

22 84.3000 77.5063 62.5730 73.8606 70.1930

23 84.2000 77.3976 62.5730 73.8606 70.1930

24 83.8000 76.9890 61.4715 70.6402 70.1930

25 83.5000 76.6804 61.4715 72.5517 66.3679

26 83.5000 76.6718 75.3380 84.6557 82.0894

27 82.8000 75.9632 59.7479 70.8864 66.3679

28 82.5000 75.6547 60.3181 71.0614 67.0982

29 82.4000 75.5461 72.0592 82.3295 82.9287

30 82.4000 75.5376 72.2342 82.3295 82.9287

Step 4 (Produce functional blocks). For FLANN the func-
tional block is made as follows:

Xi = [1, x1, sin(πx1), cos(πx1), x2, sin(πx2), cos(πx2) . . .],
(4)

For PPN the functional block is made as follows:

Xi =
[
1, x1, x2

1, x3
1, x2, x2

2, x3
2 . . .

]
, (5)

for LeNN the functional block is made as follows:

Xi = [1, x1,L1(x1), x2,L1(x2), . . .], (6)

where L1(x) = (1/2)(3x2 − 1), L2(x) = (1/2)(5x3 − 3x), and
so forth.

Step 5 (Calculation of the system outputs). For functional
based neural network models, the output was calculated as
follows:

Oi = tanh

⎛
⎝ N∑
i=1

w i × Xi

⎞
⎠. (7)

Step 6 (Calculation of the output error). The error was calcu-
lated as ei = di−Oi. It may be seen that the network produces
a scalar output.
Step 7 (Updating the weight vectors). The weight matrixes
are updated next using the following relationship:

wi(k + 1) = wi(k) + αei(k)Xi(k), (8)

where k is the time index and α is the momentum parameter.

Step 8. If error ≤ε(0.01) then go to Step 8 otherwise, go to
Step 3.
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Figure 3: Mean square plot of FLANN based noise prediction
model for 3000 iteration.
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Figure 4: Mean square plot of PPN based noise prediction model
for 3000 iteration.

Step 9. After the, learning is complete, the weights were fixed,
and the network can be used for testing.

5. Simulation Result and Discussion

The proposed system models for noise prediction were
validated using simulation studies. The studies were car-
ried out by using MATLAB simulation environment. For
validation of the models, the noise data was collected
from Balaram opencast coal mine of Mahanadi Coalfields
Limited (MCL), Talcher (Orissa, India). The test data was
measured using Brüel and Kjaer 2239 (Denmark) precision
sound level meter. From the measured parameter, VDI-2714
gives prediction by calculating all the sound attenuations
in “dB(A)” not in octave frequency band. SPL of the
different machineries from the above mine was collected.
These machineries include Shovel (10 m3 bucket capacity),
dozer (410 HP), tipper (10 T-160 HP), grader (220 HP), and
dumper (85 T).

According to Figure 2, the stepwise procedures were
required to design the model. In this problem, the system
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Figure 5: Mean square plot of LeNN based noise prediction model
for 3000 iteration.

is a MISO (multi input and output system) system. The
system architectures of these proposed functional link-based
noise prediction models are the same, whereas only the input
pattern or functional blocks are different. To design these
models, total number of 3200 dataset were selected. Out of
3200, 3000 dataset were selected for training process and
200 data were selected for testing process. In this proposed
systems, iteration based training methods were applied.
The mean square error (MSE) plot of FLANN-based noise
prediction model is represented in Figure 3, where Figures
4 and 5 are represented PPN and LeNN noise prediction
models. Performance of these models for 200 testing samples
or validation samples was represented from Figures 6, 7,
and 8.The average percentage error (APE) was used as the
performance index and was calculated as

Average Percentage Error

= 1
N

N∑
i=1

(VDIi − Estimatedi)
2

VDIi
× 100.

(9)

Tables 1, 2, 3, 4, and 5 summarizes the results for
noise prediction by proposed models and compares it with
standard VDI-2714 noise prediction model for all selected
opencast machineries. From these tables it can be seen that
the proposed PPN, FLANN and LeNN models provided
average percentage error of 7.03, 5.68, and 8.42, respectively,
for shovel. For dumper, the average percentage errors were
7.27, 5.77, and 8.20; for Grader, the APE were 9.56, 6.15,
and 9.76; for Tipper, APE for three systems were 13.59,
4.36, and 10.03, respectively. The average percentage errors
of the dozer were found as 10.94, 6.32, and 9.53 respectively.
From the simulation studies, it was observed that the average
percentage error of FLANN model was lower than the other
two models.

6. Conclusion

This paper introduced the idea of designing noise prediction
model for opencast mining machineries using functional link
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Figure 6: Prediction performance of FLANN system for 200
samples.
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Figure 7: Prediction performance of PPN system for 200 samples.

artificial neural network systems. From the present study, it
was observed that the average percentage error using FLANN
lower than PPN and LeNN systems for all the machineries.
These functional link artificial neural network based noise
prediction models can be useful tools for mining engineers
to estimate the actual noise condition of the machineries
accurately.
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