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We introduce the concepts of fuzzy Petri nets and marked fuzzy Petri nets along with their appropriate morphisms, which leads to
two categories of such Petri nets. Some aspects of the internal structures of these categories are then explored, for example, their
reflectiveness/coreflectiveness and symmetrical monoidal closed structure.

1. Introduction

Petri nets are a well-known model of concurrent systems [1].
A number of authors have been led to the study of the various
categories of Petri nets and their appropriate morphisms [2–
4], in the belief that the categorical study provides a tool to
compare different models of Petri nets. At the same time,
fuzzy Petri nets have also been studied by many authors in
different ways [5, 6]. In this paper, taking a cue from [3], we
introduce another concept of fuzzy Petri nets (although we
model our definition on the lines of [2]). This, along with
their appropriate morphisms, results in a category of fuzzy
Petri nets (and also of marked fuzzy Petri nets). The structure
of these categories is then studied on the lines similar to
those in [2], showing that one of the categories is symmetric
monoidal closed.

2. Category of Fuzzy Petri Nets

For categorical concepts used here, [7] may be referred. We
begin by collecting some basic definitions.

A Petri net is a bipartite graph, consisting of two kinds of
nodes, namely, places and transitions, where arcs are either
from a place to a transition or vice versa [3]. Graphically,
the places are represented by circles, transitions by rectangles,
and the arcs by arrows. We define a fuzzy Petri net as follows.

Definition 1. A fuzzy Petri net (in short, fPn) is 4-tuple N =
(P,T , I−, I+), where P and T are sets, called the set of places
and set of transitions, respectively, and I−, I+ : P × T →
[0, 1], are functions, called the incidence functions.

We may interpret I− and I+ defined above as follows.
For (p, t) ∈ P × T , I−(p, t) (resp., I+(p, t)) gives, the

grade with which place p is related to transition t (resp.,
transition t is related to place p). Thus, I− and I+ describe
some kind of fuzzy arcs between places and transitions.

Definition 2. An fPn-morphism from an fPn (P1,T1, I−1 , I+
1 ) to

fPn (P2,T2, I−2 , I+
2 ) is a pair ( f , g) of functions, f : P2 → P1

and g : T1 → T2 such that the following two diagrams:

(1)

“hold”, by which it is meant that for all (p, t) ∈ P2 ×
T1, I−1 ( f (p), t) ≥ I−2 (p, g(t)) and I+

1 ( f (p), t) ≤ I+
2 (p, g(t)).

Remark 3. Fuzzy Petri nets and fPn-morphisms form a
category, denoted as FPN (the identity morphisms and the
composition for this category are obvious to guess).
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Definition 4. The product of two fPn’s N1 = (P1,T1, I−1 , I+
1 )

and N2 = (P2,T2, I−2 , I+
2 ) is the fPn N1 ×N2 = ( ˜P1 ∪ ˜P2,T1 ×

T2, I−, I+), where ˜P1 = P1 × {0}, ˜P2 = P2 × {1} and I−, I+ :
( ˜P1 ∪ ˜P2)× (T1 × T2) → [0, 1] are given by

I−
((

p,n
)

, (t1, t2)
) =

⎧

⎨

⎩

I−1
(

p, t1
)

if n = 0,

I−2
(

p, t2
)

if n = 1,

I+((p,n
)

, (t1, t2)
) =

⎧

⎨

⎩

I+
1

(

p, t1
)

if n = 0,

I+
2

(

p, t2
)

if n = 1,

(2)

for all (p,n) ∈ ˜P1 ∪ ˜P2 and (t1, t2) ∈ T1 × T2.

Proposition 5. Let πi : T1 × T2 → Ti, i = 1, 2, be the two
projections and let ρi : Pi → ˜P1 ∪ ˜P2, i = 1, 2, be the two
injections. Then (ρi,πi) : N1 × N2 → Ni, i = 1, 2, are fPn-
morphisms.

Proof. To prove that (ρ1,π1) : N1 × N2 → N1 is an fPn-
morphism, we need to show that the following two diagrams
hold.

(3)

The above diagrams hold because for all (p1, (t1, t2)) ∈
P1 × (T1 × T2), I−(ρ1(p1), (t1, t2)) = I−((p1, 0), (t1, t2)) =
I−1 (p1, t1) = I−1 (p1,π1(t1, t2)) and I+(ρ1(p1), (t1, t2)) =
I+((p1, 0), (t1, t2)) = I+

1 (p1, t1) = I+
1 (p1,π1(t1, t2)). Similarly,

one can prove that (ρ2,π2) : N1 × N2 → N2 is also an fPn-
morphism.

Proposition 6. The product N1 ×N2 of fPn’s N1 and N2 is the
categorical product of N1 and N2 in FPN.

Proof. Let N ′ = (P′,T′, I′−, I′+) be an fPn together with fPn-
morphisms ( fi, gi) : N ′ → Ni, i = 1, 2. We show that there
exists a unique fPn-morphism ( f , g) : N ′ → N1 × N2 such
that (ρi,πi) ◦ ( f , g) = ( fi, gi), i = 1, 2, or equivalently that
f ◦ ρi = fi and πi ◦ g = gi, i = 1, 2. For this purpose, we
choose the following f and g. Let f : ˜P1 ∪ ˜P2 → P′ be the
map given by

f
((

p,n
)) =

⎧

⎨

⎩

f1
(

p
)

, if n = 0,

f2
(

p
)

, if n = 1,
(4)

and g = (g1, g2). We show that the diagrams

(5)

hold, that is, for all ((p,n), t) ∈ ( ˜P1 ∪ ˜P2) × T′,
I′−( f ((p,n)), t) ≥ I−(p, g(t)) and I′+( f ((p,n)), t) ≤
I+(p, g(t)), that is, I−1 (p, g1(t)) ≤ I′−( f1(p), t), if n = 0 and
I−2 (p, g2(t)) ≤ I′−( f2(p), t), if n = 1, for all t ∈ T′ as well
as I+

1 (p, g1(t)) ≥ I′+( f1(p), t), if n = 0 and I+
2 (p, g2(t)) ≥

I′+( f2(p), t), if n = 1, for all t ∈ T′. But as ( fi, gi) : N ′ →
Ni, i = 1, 2, are fPn-morphisms, the above inequalities hold,
whereby the diagrams (5) hold. Thus, ( f , g) : N ′ → N1×N2

is an fPn-morphism. Also, the definitions of f and g are such
that we obviously have f ◦ ρi = fi and πi ◦ g = gi, i = 1, 2.

To prove the uniqueness of ( f , g), let there exist an-
other fPn-morphism ( f ′, g′) such that (ρi,πi) ◦ ( f ′, g′) =
( fi, gi), i = 1, 2, that is, f ′ ◦ ρi = fi and πi ◦ g′ = gi, i = 1, 2.
We then have f ′ ◦ρ1 = f ◦ρ1, f ′ ◦ρ2 = f ◦ρ2,π1 ◦g′ = π1 ◦g,
and π2 ◦ g′ = π2 ◦ g, whereby f = f ′ and g = g′. Thus,
( f ′, g′) = ( f , g), proving the uniqueness of ( f , g). Hence the
product is a categorical product.

Definition 7. The coproduct of two fPn’s N1 = (P1,T1, I−1 , I+
1 )

and N2 = (P2,T2, I−2 , I+
2 ) is the fPn N1 ⊕N2 = (P1 × P2, ˜T1 ∪

˜T2, I−, I+), where ˜T1 = T1 × {0}, ˜T2 = T2 × {1}, and I−, I+ :
(P1 × P2)× ( ˜T1 ∪ ˜T2) → [0, 1] are given by

I−
((

p1, p2
)

, (t,n)
) =

⎧

⎨

⎩

I−1
(

p1, t
)

, if n = 0,

I−2
(

p2, t
)

, if n = 1,

I+((p1, p2
)

, (t,n)
) =

⎧

⎨

⎩

I+
1

(

p1, t
)

, if n = 0,

I+
2

(

p2, t
)

, if n = 1,

(6)

for all (p1, p2) ∈ P1 × P2 and (t,n) ∈ ˜T1 ∪ ˜T2.

Similar to Propositions 5 and 6, the following two prop-
ositions can also be proved.

Proposition 8. Let πi : P1 × P2 → Pi, i = 1, 2, be the two
projections and ρi : Ti → ˜T1 ∪ ˜T2, i = 1, 2, be the two
injections. Then (πi, ρi) : Ni → N1 ⊕ N2, i = 1, 2, are fPn-
morphisms.

Proposition 9. The coproduct N1 ⊕ N2 of fPn’s N1 and N2 is
the categorical coproduct of N1 and N2 in FPN.

Definition 10. Given two fPn’s N1 = (P1,T1, I−1 , I+
1 ) and N2 =

(P2,T2, I−2 , I+
2 ), we define two new fPn’s N1 ⊗ N2 and NN2

1
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as follows (for sets X and Y , YX shall denote the set of all
functions from X to Y):

(1) N1 ⊗N2 = (PT2
1 × PT1

2 ,T1 ×T2, I−, I+), where I−, I+ :
(PT2

1 × PT1
2 )× (T1 × T2) → [0, 1] are defined as

I−
((

α,β
)

, (t1, t2)
)=∧{1, I−1 (α(t2), t1)+I−2

(

β(t1), t2
)}

I+((α,β
)

, (t1, t2)
) = ∨{0, I+

2

(

β(t1), t2
)− I+

1 (α(t2), t1)
}

,

∀((α,β
)

, (t1, t2)
) ∈

(

PT2
1 × PT1

2

)

× (T1 × T2).

(7)

(2) NN2
1 = (T2×P1,TT2

1 ×PP1
2 , I−, I+), where I−, I+ : (T2×

P1)× (TT2
1 × PP1

2 ) → [0, 1] are defined as

I−
((

t, p
)

,
(

α,β
)) = ∨{0, I−1

(

p,α(t)
)− I−2

(

β
(

p
)

, t
)}

I+((t, p
)

,
(

α,β
)) = ∧{1, I+

1

(

p,α(t)
)

+ I+
2

(

β
(

p
)

, t
)}

∀((t, p), (α,β
)) ∈ (T2 × P1)×

(

TT2
1 × PP1

2

)

.

(8)

Proposition 11. The category FPN is a symmetric monoidal
closed category (with the constructions in (1) and (2) above,
respectively, giving the associated tensor product and hom-
object).

Proof. For convenience, the notation Ni is used to denote
the fPn (Pi,Ti, I−i , I+

i ). We give a sketch of the proof of
closedness of FPN. For this, the two functors −⊗N0, (−)N0 :
FPN → FPN are denoted, respectively, as F and G, which
map any FPN-morphism ( f , g) : N1 → N2, respectively, to
FPN-morphisms, ( f ′, g′) : F(N1) → F(N2), and ( f ′′g′′) :
G(N1) → G(N2), such that f ′((λ,μ)) = ( f ◦ λ,μ ◦ g),
g′((t2, t0)) = (g(t2), t0), for all ((λ,μ), (t2, t0)) ∈ (PT0

2 ×PT2
0 )×

(T2 × T0), and f ′′((t0, p2)) = (t0, f (p2)), g′′((ρ, ν)) = (g ◦
ρ, ν ◦ f ), for all ((t0, p2), (ρ, ν)) ∈ (T0 × P2)× (TT0

1 × PP1
0 ).

It turns out that G is a right adjoint to F; the associated
unit of the adjunction, η : IFPN → GF, is given for each
N1 ∈ FPN , by ηN1 = (FN1 ,GN1 ) : N1 → GF(N1), where
FN1 : T0 × (PT0

1 × PT1
0 ) → P1 and GN1 : T1 → (T1 ×

T0)T0 × P
(P

T0
1 ×PT1

0 )
0 , are such that FN1 ((t0, (λ,μ)) = λ(t0), and

GN1 (t1) = (αt1 ,βt1 ), with αt1 (t0) = (t1, t0) and βt1 ((λ,μ)) =
μ(t1), for all (t0, (λ,μ)) ∈ T0×(PT0

1 ×PT1
0 ), and for all t1 ∈ T1.

To establish the universality of ηN1 , we need to produce,
for any given N2 ∈ FPN and FPN-morphism ( f , g) : N1 →
G(N2), a unique FPN-morphism ( f ∗, g∗) : F(N1) → N2,
such that the following diagram commutes.

N1

ηN1
GF(N1)

G(f∗, g∗)

G(N2)

(f , g)

F(N1)

(f∗, g∗)

N2

We only describe ( f ∗, g∗), leaving out the verification of
the commutativity of the above diagram and the uniqueness
of ( f ∗, g∗). ( f ∗, g∗) is given by f ∗ : P2 → PT0

1 ×PT1
0 and g∗ :

T1×T0 → T2, such that f ∗(p2) = ( f
p2

1 , f
p2

2 ) and g∗(t1, t0) =
gt11 (t0), with f

p2

1 (t0) = f (t0), f
p2

2 (t1) = gt12 (p2), and g(t1) =
(gt11 , gt12 ).

3. Marked Fuzzy Petri Nets

A marked Petri net is a Petri net together with a function,
called marking defined from the set of places to the set of
natural numbers [2]. Marking at a particular place gives the
number of tokens at that particular place. In this section, we
introduce a concept of marked fuzzy Petri nets and thereby a
category of marked fuzzy Petri nets.

Definition 12. An fPn N = (P,T , I−, I+), together with a
function M : P → [0, 1] (called a fuzzy marking of N), is
called a marked fuzzy Petri net (in short, an mfPn) and is
denoted as (N ,M).

Here, marking at a particular place may be interpreted as
the degree of confidence to which a token can reside at that
place.

Definition 13. Given an mfPn (N ,M), a transition t ∈ T is
said to fire at M (or t is enabled at M), if I−(p, t) ≤M(p), for
all p ∈ P.

In an mfPn (P,T , I−, I+,M), I− : P × T → [0, 1], for
fixed t ∈ T induces a function I−t : P → [0, 1] such that for
p ∈ P, I−t (p), gives the degree of confidence to which a tran-
sition t ∈ T can fire at marking M. Thus, a transition t
at a marking M of mfPn (N ,M) can fire if the degree of
confidence to which it fires does not exceed the degree of con-
fidence to which a token can reside at places.

After t firing at the fuzzy marking M, we get a new fuzzy
marking Mt of N , given by Mt(p) = min{1,M(p)−I−(p, t)+
I+(p, t)}, for all p ∈ P. We say that t ∈ T fires at M to yield

Mt and denote this by M
t→ Mt. Also, Mt is then said to be

directly reachable from M through the transition t.
Similar to [8], the marked fuzzy Petri net models of

negation, disjunction, and conjunction of fuzzy proposition,
can also be given. We illustrate these by following examples.

Example 14. Consider the following graphical representation
of an mfPn, which gives the truth value of the negation of a
fuzzy proposition. For this, take an mfPn with P = {p1, p2}
and T = {t}. Given a fuzzy proposition, the initial marking
M is so chosen that M(p1) is the truth value of the fuzzy
proposition and M(p2) = 0. Also, I−(p1, t) is so chosen
that I−(p1, t) ≤ M(p1) (so that the transition t can fire)
and we also take I+(p2, t) to be 1 − M(p1). After the firing
of the transition t, at marking M, the marking at p2 is
given by Mt(p2) = min{1,M(p2) − I−(p2, t) + I+(p2, t)} =
1 − M(p1), the truth value of the negation of the fuzzy

proposition.
tp1 p2
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Example 15. Similar to Example 14, consider the follow-
ing graphical representation of an mfPn, which gives the
disjunction of truth values of two fuzzy propositions. For
this, take an mfPn, with P = {p1, p2, p3} and T = {t}.
Given two fuzzy propositions, the initial marking M is so
chosen that M(p1) and M(p2) are the truth values of the
given fuzzy propositions and M(p3) = 0. Also, I−(p1, t)
and I−(p2, t) are so chosen that I−(p1, t) ≤ M(p1) and
I−(p2, t) ≤ M(p2) (so that the transition t can fire) and
we also take I+(p3, t) to be M(p1) ∨M(p2). After the firing
of the transition t, at marking M, the marking at p3 is
given by Mt(p3) = min{1,M(p3) − I−(p3, t) + I+(p3, t)} =
M(p1)∨M(p2), the truth value of the disjunction of the fuzzy

propositions.

t

p1

p2

p3

(Analogous to Example 15, one can design mfPn, which
gives the conjunction of the truth values of two fuzzy propo-
sitions.)

4. Category of Marked Fuzzy Petri Net

In this section, a category of marked fuzzy Petri net, inspired
from [2], is introduced.

Definition 16. For mfPn’s (P1,T1, I−1 , I+
1 ,M1) and (P2,T2, I−2 ,

I+
2 ,M2), a function f : P2 → P1, (M1,M2) is said to be f -ok

if (M1 ◦ f )(p) ≤M2(p), for all p ∈ P2.

Remark 17. MFPN shall denote the category of all mfPn’s,
with mfPn-morphisms ( f , g) : (N1,M1) → (N2,M2) being
the fPn-morphisms ( f , g) : N1 → N2 such that (M1,M2) is
f -ok.

Proposition 18. Let (N1,M1) = (P1,T1, I−1 , I+
1 ,M1) and

(N2,M2) = (P2,T2, I−2 , I+
2 ,M2) be two mfPn’s and let ( f , g) :

(N1,M1) → (N2,M2) be an mfPn-morphism. Then for t1 ∈
T1, g(t1) is enabled at M2, if t1 is enabled at M1.

Proof. As ( f , g) : N1 → N2 is an mfPn-morphism,
I−1 ( f (p2), t1) ≥ I−2 (p2, g(t1)) and M2(p2) ≥ M1( f (p2)),
for all (p2, t1) ∈ P2 × T1. Also, as t1 is enabled at
M1, we have I−1 (p1, t1) ≤ M1(p1), for all p1 ∈ P1,
whence I−1 ( f (p2), t1) ≤ M1( f (p2)), for all p2 ∈ P2. But
I−2 (p2, g(t1)) ≤ I−1 ( f (p2), t1) ≤ M1( f (p2)) ≤ M2(p2),
whereby, I−2 (p2, g(t1)) ≤M2(p2), for all p2 ∈ P2. Thus, g(t1)
is enabled at M2.

Proposition 19. Let (N1,M1) = (P1,T1, I−1 , I+
1 ,M1) and

(N2,M2) = (P2,T2, I−2 , I+
2 ,M2) be two mfPn’s and ( f , g) :

(N1,M1) → (N2,M2) be an mfPn-morphism. Then for t1 ∈
T1, ((M1)t1 , (M2)g(t1)) is f -ok, if M1

t1→ (M1)t1 .

Proof. From the above proposition, it is clear that

M2
g(t1)→ (M2)g(t1). Also, as ( f , g) : (N1,M1) → (N2,M2)

is an mfPn-morphism, I−1 ( f (p2, t1)) ≥ I−2 (p2, g(t1)),
I+

1 ( f (p2, t1)) ≤ I+
2 (p2, g(t1)), and M1( f (p2)) ≤ M2(p2),

for all p2 ∈ P2. Consequently, for all (p2, t1) ∈
P2 × T1,M1( f (p2)) − I−1 ( f (p2), t1) + I+

1 ( f (p2), t1) ≤
M2(p2) − I−2 (p2, g(t1)) + I+

2 (p2, g(t1)), whereby, min{1,
M1( f (p2))−I−1 ( f (p2), t1)+I+

1 ( f (p2), t1)} ≤ min{1, (M2(p2)−
I−2 (p2, g(t1)) + I+

2 (p2, g(t1))}. Thus, (M1)t1 ( f (p2)) ≤
(M2)g(t1)(p2) for all (p2, t1) ∈ P2 × T1. Hence ((M1)t1 ,
(M2)g(t1)) is f -ok, for t1 ∈ T1.

Definition 20. The product of two mfPn’s (N1,M1) and
(N2,M2) is the mfPn (N1×N2,M1⊕M2), where N1×N2 is the
product of fPn’s N1 and N2 and M1 ⊕M2 : ˜P1 ∪ ˜P2 → [0, 1]
is given by

(M1 ⊕M2)
(

p,n
) =

⎧

⎨

⎩

M1
(

p
)

if n = 0,

M2
(

p
)

if n = 1,
(9)

for all (p,n) ∈ ˜P1 ∪ ˜P2.

Proposition 21. The FPN-morphisms (ρi,πi) : N1 × N2 →
Ni, given in Proposition 5 are MFPN-morphisms from (N1 ×
N2,M1 ⊕M2) to (Ni,Mi), i = 1, 2.

Proof. Since (M1 ⊕M2)(ρ1((p,n))) = (M1 ⊕M2)((p, 0)) =
M1(p) and (M1 ⊕ M2)(ρ2((p,n))) = (M1 ⊕ M2)((p, 1)) =
M2(p), (M1 ⊕ M2,M1) and (M1 ⊕ M2,M2) are ρ1-ok and
ρ2-ok, respectively. Hence (ρi,πi), i = 1, 2, are MFPN-
morphisms.

Using Propositions 5 and 21, the next proposition is
evident.

Proposition 22. The product of mfPn’s is the categorical prod-
uct in MFPN.

Definition 23. The coproduct of two mfPn’s (N1,M1) and
(N2,M2) is the mfPn (N1⊕N2,M1∨M2), where N1⊕N2 is the
coproduct of fPn’s N1 and N2 and M1∨M2 : P1×P2 → [0, 1]
is given by (M1 ∨ M2)(p1, p2) = M1(p1) ∨ M2(p2), for all
(p1, p2) ∈ P1 × P2.

Similar to Propositions 21 and 22, the following two
propositions can also be proved.

Proposition 24. The FPN-morphisms (πi, ρi) : Ni → N1 ⊕
N2, i = 1, 2, given in Proposition 8 are MFPN-morphisms from
(Ni,Mi) to (N1 ⊕N2,M1 ∨M2).

Proposition 25. The coproduct of mfPn’s is the categorical
coproduct in MFPN.

5. Relationship between FPN and MFPN

There is an obvious functor k1 : MFPN → FPN , given by
(N ,M) �→ N and ( f , g) �→ ( f , g).



Advances in Fuzzy Systems 5

We omit the easy verification of the following observa-
tions.

Proposition 26. There are full and faithful functors k2, k3 :
FPN → MFPN, which, on objects, are respectively, given by
N �→ (N , 0) and N �→ (N , 1), where 0 and 1, are respectively,
the 0-valued and the 1-valued constant functions, and which
leave the morphisms unchanged.

It is easy to prove the following.

Proposition 27. The functor k2 (resp., k3) is left adjoint (resp.,
right adjoint) to the functor k1.

Thus, we have the following.

Proposition 28. The category FPN is isomorphic to a full
reflective subcategory, and also to a full coreflective subcategory,
of MFPN.

6. Conclusion

We note that nothing has been said about the symmetric
monoidal closed structure of the category MFPN of marked
fuzzy Petri nets. An obvious attempt to make MFPN
symmetric monoidal closed would appear to be as follows.
Given mfPn’s (N0,M0) and (N1,M1), the fPn’s N1 ⊗ N0

and NN0
1 (cf. Definition 10) can be made mfPn’s by taking

their respective fuzzy markings to be M1 ⊗ M0 : PT0
1 ×

PT1
0 → [0, 1] and MM0

1 : T0 × P1 → [0, 1], defined as
M1 ⊗M0((λ,μ)) = ∨{∨T0{M1(λ(t0))},∨T1{M0(μ(t1))}} and
MM0

1 ((t0, p1)) = M1(p1), for all (λ,μ) ∈ PT0
1 × PT1

0 , for
all (t0, p1) ∈ T0×P1. However, for each fixed mfPn (N0,M0),
the resulting functors − ⊗ (N0,M0), (−)(N0,M0) : MFPN →
MFPN do not turn out to be adjoint. As an attempt to repair
the above situation, M1 ⊗ M0 may be redefined as M1 ⊗
M0((λ,μ)) = ∨T0{M1(λ(t0))}, so that the functor (−)(N0,M0)

does, now, turn out to be right adjoint to the (modified)
functor − ⊗ (N0,M0). However, the symmetry of ⊗ in this
modified setup is now lost (this situation is similar to the
one noted in [2]). So there may be a different symmetric
monoidal closed structure on MFPN which we have not been
able to find presently.
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