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We implement an algorithm that uses a system of fuzzy relation equations (SFRE) with the max-min composition for solving a
problem of spatial analysis. We integrate this algorithm in a Geographical Information System (GIS) tool, and the geographical
area under study is divided in homogeneous subzones (with respect to the parameters involved) to which we apply our process
to determine the symptoms after that an expert sets the SFRE with the values of the impact coefficients. We find that the best
solutions and the related results are associated to each subzone. Among others, we define an index to evaluate the reliability of the
results.

1. Introduction

A Geographical Information System (GIS) is used as a
support decision system for problems in a spatial domain;
in many cases, we use a GIS to analyze spatial distribution
of data, spatial relations, the impact of event data on spatial
areas; simple examples of this analysis are the creation
of thematic maps, the geoprocessing operators, the buffer
analysis, and so forth. Often the expert analyzes spatial
data in a decision making process with the help of a GIS
which involves integration of images, spatial layers, attributes
information and an inference mechanism based on these
attributes. The diversity and the inhomogeneity between the
individual layers of spatial information and the inaccuracy
of the results can lead to uncertain decisions, so that one
needs the use of fuzzy inference calculus to handle these
uncertain information. Many authors [1–5] propose models
to solve spatial problems based on fuzzy relational calculus.
In this paper, we propose an inferential method to solve
spatial problems based on an algorithm for the resolution
of a system of fuzzy relation equations (shortly, SFRE) given
in [6] (cf. also [7, 8]) and applied in [9] to solve industrial
application problems. Here we integrate this algorithm in the

context of a GIS architecture. Usually an SFRE with max-min
composition is read as

(a11 ∧ x1)∨ · · · ∨ (a1n ∧ xn) = b1,

(a21 ∧ x1)∨ · · · ∨ (a2n ∧ xn) = b2,

...

(am1 ∧ x1)∨ · · · ∨ (amn ∧ xn) = bm.

(1)

The system (1) is said consistent if it has solutions. In
his pioneering paper [10], the author determines the greatest
solution in case of max-min composition. After these results,
many researchers have found algorithms which determine
minimal solutions of max-min fuzzy relation equations (cf.
e.g., [11–18]). In [6, 7] a method is described for the
consistence of the system (1), and moreover it calculates the
complete set of the solutions. This method is schematized in
Figure 1 and described below.

(i) Input extraction: the input data are extracted and
stored in the dataset.
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Figure 1: Resolution process of an SFRE.

(ii) The input variable is fuzzified. A fuzzy partition
of the input domain is created; the corresponding
membership degree of every input data is assigned to
each fuzzy set.

(iii) The membership degrees of each fuzzy set determine
the coefficients {b1, . . . , bm} of (1). The values of the
coefficients ai j are set by the expert and the whole set
of solutions (x1, . . . , xn) of (1) is determined as well.

(iv) A fuzzy partition of the domain [0, 1] is created for
the output variables o1, . . . , ok; every fuzzy set of the
partition corresponds to a determined value xj .

(v) The output data o1, . . . , ok are extracted. A partition
of fuzzy sets corresponds to each output variable oj
( j = 1, . . . , k); in this phase the linguistic label of the
most appropriate fuzzy set is assigned to the output
variable oj .

This process has been applied to a real spatial problem
in which the input data vary for each subzone of the
geographical area. We have the same input data, and the
expert applies the same SFRE (1) on each subzone. The
expert starts from a valuation of input data, and he uses
linguistic labels for the determination of the output results
for each subzone. The input data are the facts or symptoms;
the parameters to be determined are the causes. For example,
let us consider a planning problem. A city planner needs to
determine in each subzone the mean state of buildings (x1)
and the mean soil permeability (x2), knowing the number
of collapsed building in the last year (b1) and the number
of flooding in the last year (b2). In Figure 2, we suppose
to create for each symptom’s and cause’s variable domain
a fuzzy partition of three fuzzy sets (generally, one is faced

with trapezoidal or triangular fuzzy number, this last one is
denoted in the sequel shortly with the acronym TFN). The
expert creates the SFRE (1) for each subzone by setting the
impact matrix A, whose entries ai j (i = 1, . . . ,n and j =
1, . . . ,m) represent the impact of the jth cause xj to the
production of the ith symptom bi, where the value of bi is the
membership degree in the corresponding fuzzy set and let
B = [b1, . . . , bm]. In another subzone the input data vector
B and the matrix A can vary. For example, we consider the
equation:

(0.8∧ x1)∨ (0.2∧ x2)∨ (0.0∧ x3)∨ (0.8∧ x4)

∨ (0.3∧ x5)∨ (0.0∧ x6) = b3 = 0.9.
(2)

The expert sets for the symptom b3 = “collapsed building
in the last year = high” = 0.9, an impact 0.8 of the variable
“mean state of buildings = scanty”, an impact 0.2 of the
variable “mean state of buildings = medium”, an impact 0.0
of the variable “mean state of buildings = high”, an impact
0.8 of the variable “mean soil permeability = low”, an impact
0.3 of the variable “mean soil permeability = medium”, or an
impact 0.0 of the variable “mean soil permeability = high”.

We can determine the maximal interval solutions of
(1). Each maximal interval solution is an interval whose
extremes are the values taken from a minimal solution and
from the greatest solution. Every value xi belongs to this
interval. If the SFRE (1) is inconsistent, it is possible to
determine the rows for which no solution is permitted. If
the expert decides to exclude the row for which no solution
is permitted, he considers that the symptom bi (for that
row) is not relevant to its analysis, and it is not taken
into account. Otherwise, the expert can modify the setting
of the coefficients of the matrix A to verify if the new
system has some solution. In general, the SFRE (1) has T
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Figure 2: Examples of trapezoidal fuzzy numbers used for symptoms and causes.

maximal interval solutions Xmax(1), . . . ,Xmax(T). In order to
describe the extraction process of the solutions, let Xmax(t),
t ∈ {1, . . . ,T}, be a maximal interval solution given below,
where X low is a minimal solution and Xgr is the greatest
solution. Our aim is to assign the linguistic label of the
most appropriate fuzzy sets corresponding to the unknown
{xj1 , xj1 , . . . , xjs} related to an output variable os, s = 1, . . . , k.
For example, assume that the three fuzzy sets x1, x2, x3 (resp.,
x4, x5, x6) are related to o1 (resp., o2) and are represented
from the TFNs given in Table 1, where INF( j), MEAN( j),
and SUP( j) are the three fundamental values of the generic
TFN xj , j = j1, . . . , js. We can write their membership fun-
ctions µj1 ,µj2 , . . . ,µjh as follows:

µj1

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if INF
(
j1
)≤ x ≤MEAN

(
j1
)
,

SUP
(
j1
)− x

SUP
(
j1
)−MEAN

(
j1
) , if MEAN

(
j1
)
< x ≤SUP

(
j1
)
,

0, otherwise,
(3)

µj

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − INF
(
j
)

MEAN
(
j
)− INF

(
j
) , if INF

(
j
) ≤ x ≤ MEAN

(
j
)
,

SUP
(
j
)− x

SUP
(
j
)−MEAN

(
j
) , if MEAN

(
j
)
< x ≤ SUP

(
j
)
,

0, otherwise,

j ∈ { j2, . . . , js−1
}

,
(4)

µjs

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x − INF
(
js
)

MEAN
(
js
)− INF

(
js
) , if INF

(
js
)≤ x≤ MEAN

(
js
)
,

1, if MEAN
(
js
)
< x≤ SUP

(
js
)
,

0, otherwise.
(5)

If XMint( j) (resp., XMaxt( j)) is the min (resp., max)
value of every interval corresponding to the unknown xj ,
we can calculate the arithmetical mean value XMeant( j) of
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Table 1: TFNs values for the fuzzy sets.

Unknown INF( j) MEAN( j) SUP( j)

x1 0.0 0.2 0.4

x2 0.3 0.5 0.7

x3 0.6 0.8 1.0

x4 0.0 0.2 0.4

x5 0.3 0.5 0.7

x6 0.6 0.8 0.1

the jth component of the above maximal interval solution
Xmax(t) as

XMeant
(
j
) = XMint

(
j
)

+ XMaxt
(
j
)

2
, (6)

and we get the vector column XMeant = [XMeant(1), . . . ,
XMeant(n)]−1 (cf. Table 2). The value given from
max{XMeant( j1), . . . ,XMeant( js)} obtained for the un-
knowns xj1 , . . . , xjs corresponding to the output variable os,
is the linguistic label of the fuzzy set assigned to os and it is
denoted by scoret (os), defined also as reliability of os in the
interval solution t. In our example, we have that “o1 = mean
state of buildings = scanty” and “o2 = mean soil permeability =
medium”, hence scoret(o1) = 0.70 and scoret(o2) = 0.55. For
the output vector O = [o1, . . . , ok], we define the following
reliability index in the interval solution t as

Relt(O) = 1
k
·

k∑

s=1

scoret(os) (7)

and then as final reliability index of O, the number Rel(O) =
max{Relt(O) : t = 1, . . . ,T}.

In our example, we have Relt(O) = (0.7 + 0.55)/2 = 0.625.
Therefore, the higher the reliability of our solution, the closer
the final reliability index Rel(O) to 1. In Section 2, we give
an extended and articulated overview on how to determine
the whole set of the solutions of an SFRE, and in Section 3
we show how the proposed algorithm is applied in spatial
analysis. Section 4 contains the results of our simulation.

2. SFRE: An Extended Overview

In this paper, we investigate the solutions of the SFRE (1),
which is abbreviated in the following known form:

A ◦ X = B, (8)

where A = (ai j) is the matrix of coefficients, X = (x1, x2,
. . . , xn)−1 is the column vector of the unknowns, and B =
(b1, b2, . . . , bm)−1 is the column vector of the known terms,
being ai j ,xj ,bi ∈ [0, 1] for each i = 1, . . . ,m and j = 1, . . . ,n.
We have the following definitions and terminologies: the
whole set of all solutions X of the SFRE (8) is denoted by
Ω. If Ω /=Ø, then the SFRE (8) is called consistent, otherwise
it is called inconsistent. A solution X̂ ∈ Ω is called a minimal
solution if X ≤ X̂ for some X ∈ Ω implies X = X̂ , where “≤”
is the partial order induced in Ω from the natural order of

[0, 1]. If the minimal solution is unique, then it is the least (or
minimum) solution of the SFRE (8). We also recall that the
system (8) has the unique greatest (or maximum) solution
Xgr = (x

gr
1 , x

gr
2 , . . . , x

gr
n )−1 if Ω /=Ø [10]. A matrix interval

Xinterval of the following type:

Xinterval =

⎛

⎜
⎜
⎜
⎜
⎝

[a1, b1]

[a2, b2]

[. . . , . . .]

[an, bn]

⎞

⎟
⎟
⎟
⎟
⎠

,
(9)

where [aj , bj] ⊆ [0, 1] for each j = 1, . . . ,n, is called an inter-
val solution of the SFRE (8) if every X = (x1, x2, . . . , xn)−1

such that xj ∈ [aj , bj] for each j = 1, . . . ,n, belongs to Ω. If
aj is a membership value of a minimal solution and bj is a
membership value of Xgr for each j = 1, . . . ,n, then Xinterval

is called a maximal interval solution of the SFRE (8), and it
is denoted by Xmax(t), where t varies from 1 to the number of
minimal solutions. The SFRE (8) is said to be in normal form
if b1 ≥ b2 ≥ · · · ≥ bm. The time computational complexity
to reduce an SFRE in a normal form is polynomial [6, 8].
Now we consider the matrix A∗ = (a∗i j) so defined:

a∗i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if ai j < bi,

bi, if ai j = bi,

1, if ai j > bi,

(10)

where i = 1, . . . ,m and j = 1, . . . ,n. The linguistic descrip-
tion of a∗i j as S-type coefficient (Smaller) if ai j < bi, E-
type coefficient (Equal) if ai j = bi, and G-type coefficient
(Greater) if ai j > bi is often used. A∗ is called augmented
matrix, and the system A∗ ◦ X = B is said associated to
the SFRE (8). Without loss of generality, from now on we
suppose that the system (8) is in normal form. We also
obtained the following definitions and results from [6, 8, 19,
20].

Definition 1. Let the SFRE (8) be consistent and A∗j = {a∗1 j ,
. . . , a∗mj}. If A∗( j) contains G-type coefficients and k ∈
{1, . . . ,m} is the greatest index of row such that a∗k j = 1, then
the following coefficients in A∗( j) are called selected:

(i) a∗i j for i ∈ {1, . . . , k} with a∗i j ≥ bi = bk,

(ii) a∗i j for i ∈ {k + 1, . . . ,m} with a∗i j = bi.

Definition 2. If A∗( j) does not contain G-type coefficients,
but it contain E-type coefficients and r ∈ {1, . . . ,m} is the
smallest index of row such that a∗r j = br , then any a∗i j = bi in
A∗( j) for i ∈ {r, . . . ,m} is called selected.

Theorem 3. Consider an SFRE (8). Then the following occurs.

(i) The SFRE (8) is consistent if and only if there exist at
least one selected coefficient for each ith equation, i =
1, . . . ,m.

(ii) The complexity time function for determining the
consistency of the SFRE (8) is O(m · n).
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Table 2: TFNs mean values.

Output variable Unknown component Linguistic label XMint(j) XMaxt(j) XMeant(j)

x1 scanty 0.6 0.8 0.70

o1 x2 medium 0.2 0.4 0.30

x3 good 0.0 0.1 0.05

x4 low 0.3 0.5 0.40

o2 x5 medium 0.4 0.7 0.55

x6 good 0.0 0.3 0.15

Consequently, when an SFRE (8) is inconsistent, the equa-
tions for which no element is a selected coefficient could not
be satisfied simultaneously with the other equations having
at least one selected coefficient. Furthermore, a vector IND =
(IND(1), . . . , IND(m)) is defined by setting IND(i) equal to
the number of selected coefficients in the ith equation for
each i = l, . . . ,m. If IND(i) = 0, then all the coefficients
in the ith equation are not selected and the system is
inconsistent. The system is consistent if IND(i) /= 0 for each
i = l, . . . ,m and the product

PN2 =
m∏

i=1

IND(i), (11)

gives the upper bound of the number of the eventual minimal
solutions.

Theorem 4. Let the SFRE (8) be consistent. Then the following
occurs.

(i) The SFRE has a unique greatest solution Xgr with
component x

gr
j = bk if the jth column A∗( j) of A∗

contains selected G-type coefficients a∗k j and x
gr
j = 1

otherwise.

(ii) The complexity time function for computing Xgr is
O(m · n).

A help matrix H = (hi j), with i = 1, . . . ,m and j = 1, . . . ,
n, is defined as follows:

hi j =
⎧
⎨

⎩

bi, if a∗i j is selected,

0, otherwise.
(12)

Let |Hi| be the number of coefficients hi j in the ith
equation of the SFRE (8). Then the number of potential
minimal solutions cannot exceed the value

PN1 =
m∏

i=1

|Hi|, (13)

where PN2 ≤ PN1.

Definition 5. Let hi = (hi1,hi2, . . . ,hin) and hk = (hk1,hk2, . . . ,
hkn) be the ith and the kth rows of the help matrix H . If for
each j = 1, . . . n, hi j /= 0 implies both hk j /= 0 and hk j ≤ hi j ,
then the ith row (resp., equation) is said dominant over the
kth row in H (resp., equation) or that the kth row (resp.,
equation) is said dominated by the ith row (resp., equation).

In other terms, if the ith equation is dominant over the
kth equation in (8), then the kth equation is a redundant
equation of the system. By using Definition 5, we can build a
matrix of dimension m × n, called dominance matrix, with
components:

h∗i j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if the ith equation is dominated by

another equation,

hi j , otherwise.

(14)

For each i = 1, . . . ,m, now we set |H∗
i | as the number

of coefficients h∗i j = bi /= 0 in the ith row of the dominance
matrix H∗. When this value is 0, we set |H∗

i | = 1. Then the
number of potential minimal solutions of the SFRE cannot
exceed the value

PN3 =
m∏

i=1

∣
∣H∗

i

∣
∣, (15)

where PN3 ≤ PN2 ≤ PN1. In [6, 8, 20], the authors use
the symbol 〈bi/ j〉 to indicate the coefficients h∗i j = bi /= 0.
We have h∗i j ∧ xj = bi if xj ∈ [bi, 1] and xj = bi is the
jth component of a minimal solution. A solution of the ith
equation can be written as

Hi =
n∑

j=1

〈
bi
j

〉

. (16)

In [6, 8] the concept of concatenation W is introduced to
determine all the components of the minimal solutions and
it is given by

W =
m∏

i=1

Hi =
m∏

i=1

⎛

⎝
n∑

j=1

〈
bi
j

〉⎞

⎠. (17)

The following properties hold:

(i) commutativity:
〈
bi1
j1

〉〈
bi2
j2

〉

=
〈
bi2
j2

〉〈
bi1
j1

〉

, (18)

(ii) associativity:
〈
bi1
j1

〉(〈
bi2
j2

〉〈
bi3
j3

〉)

=
(〈

bi1
j1

〉〈
bi2
j2

〉)〈
bi3
j3

〉

,

(19)
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(iii) distributivity with respect to the addition:

〈
bi1
j1

〉(〈
bi2
j2

〉

+

〈
bi3
j3

〉)

=
〈
bi1
j1

〉〈
bi2
j2

〉

+

〈
bi1
j1

〉〈
bi3
j3

〉

,

(20)

(iv) absorption for multiplication:

〈
bi1
j1

〉〈
bi2
j2

〉

=

⎧
⎪⎪⎨

⎪⎪⎩

〈
bi1 ∧ bi2

j

〉

, if j1 = j2 = j,

unchanged, otherwise,
(21)

(v) absorption for addition:

〈
bi1
j1

〉〈
bi2
j2

〉

· · ·
〈
bim
jn

〉

+

〈
bk1

j1

〉〈
bk2

j2

〉

· · ·
〈
bkm
jn

〉

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈
bi1
j1

〉〈
bi2
j2

〉

· · ·
〈
bim
jn

〉

, if bih = bkh ,

h ∈ {1, . . . ,m},
unchanged, otherwise.

(22)

We can determine the minimal solutions X low(t) =
(xlow(t)

1 , xlow(t)
2 , . . . , xlow(t)

n )−1, t ∈ {1, . . . , PN(3)}, with com-
ponents

xlow(t)
j =

⎧
⎨

⎩

bit , if bit /= 0,

0, otherwise.
(23)

The above definitions shall be clarified in the following
example of an SFRE with 4 equations and 6 unknown:

(1.0∧ x1)∨ (0.0∧ x2)∨ (0.0∧ x3)

∨ (0.9∧ x4)∨ (0.2∧ x5)∨ (0.0∧ x6) = 0.1,

(0.5∧ x1)∨ (0.3∧ x2)∨ (0.4∧ x3)

∨ (0.5∧ x4)∨ (0.3∧ x5)∨ (0.4∧ x6) = 0.3,

(0.7∧ x1)∨ (0.4∧ x2)∨ (0.2∧ x3)

∨ (0.7∧ x4)∨ (0.4∧ x5)∨ (0.2∧ x6) = 0.3,

(0.4∧ x1)∨ (0.7∧ x2)∨ (0.2∧ x3)

∨ (0.4∧ x4)∨ (0.7∧ x5)∨ (0.2∧ x6) = 0.3.

(24)

We have

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.0 0.0 0.0 0.9 0.2 0.0

0.5 0.3 0.4 0.5 0.3 0.4

0.7 0.4 0.2 0.7 0.4 0.2

0.4 0.7 0.2 0.4 0.7 0.2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.1

0.3

0.3

0.3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (25)

By using the normal form, we obtain that

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5 0.3 0.4 0.5 0.3 0.4

0.7 0.4 0.2 0.7 0.4 0.2

0.4 0.7 0.2 0.4 0.7 0.2

1.0 0.0 0.0 0.9 0.2 0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.3

0.3

0.3

0.1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (26)

Now we compute the matrix A∗ and the vector IND as
follows:

A∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.0 0.3 1.0 1.0 0.3 1.0

1.0 1.0 0.0 1.0 1.0 0.0

1.0 1.0 0.0 1.0 1.0 0.0

1.0 0.0 0.0 1.0 1.0 0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, IND =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3

1

1

3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(27)

The SFRE is consistent because each component of IND
is not null. The greatest solution is given by

Xgr =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.1

0.3

0.3

0.1

0.1

0.3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (28)

Now we calculate the help matrix H and the dominant
matrix H∗ as follows:

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0 0.3 0.3 0.0 0.0 0.3

0.0 0.3 0.0 0.0 0.0 0.0

0.0 0.3 0.0 0.0 0.0 0.0

0.1 0.0 0.0 0.1 0.1 0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

H∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.0 0.0 0.0 0.0

0.1 0.0 0.0 0.1 0.1 0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(29)

Then we have |H∗
1 | = |H∗

2 | = |H∗
3 | = 1, |H∗

1 | = 3 and
hence PN3 = 3. By using the properties (18)–(23), we have
that

W =
〈

0.3
2

�(〈
0.1
1

�

+
〈

0.1
4

�

+
〈

0.1
5

�)

=
〈

0.1
1

�〈
0.3
2

�

+
〈

0.3
2

�〈
0.1
4

�

+
〈

0.3
2

�〈
0.1
5

�

.

(30)
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The three minimal solutions are given by

X low(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.1

0.3

0.0

0.0

0.0

0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, X low(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0

0.3

0.0

0.1

0.0

0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, X low(3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0

0.3

0.0

0.0

0.1

0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(31)

The three maximal interval solutions are given by

Xmax(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.1, 0.1]

[0.3, 0.3]

[0.0, 0.3]

[0.0, 0.1]

[0.0, 0.1]

[0.0, 0.3]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Xmax(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.0, 0.1]

[0.3, 0.3]

[0.0, 0.3]

[0.1, 0.1]

[0.0, 0.1]

[0.0, 0.3]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Xmax(3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.0, 0.1]

[0.3, 0.3]

[0.0, 0.3]

[0.0, 0.1]

[0.1, 0.1]

[0.0, 0.3]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(32)

In order to determine if an SFRE is consistent, hence its
greatest solution and minimal solutions, we have used the
universal algorithm of [6, 8] based on the above concepts.
For brevity of presentation, here we do not give this
algorithm which has been implemented and tested under
C++ language. The C++ library has been integrated in the
ESRI ArcObject Library of the tool ArcGIS 9.3 for a problem
of spatial analysis illustrated in Section 3.

3. SFRE in Spatial Analysis

We consider a specific area of study on the geographical
map on which we have a spatial data set of “causes” and
we want to analyze the possible “symptoms”. We divide this
area in P subzones (see, e.g, Figure 3), where a subzone is
an area in which the same symptoms are derived by input
data or facts, and the impact of a symptom on a cause is the
same one as well. It is important to note that even if two
subzones have the same input data, they can have different
impact degrees of symptoms on the causes. For example, the
cause that measures the occurrence of floods may be due to
different degrees of importance to the presence of low porous
soils or to areas subjected to continuous rains. Afterwards
the area of study is divided in homogeneous subzones, hence
the expert creates a fuzzy partition for the domain of each
input variable and, for each subzone, he determines the
values of the symptoms bi, as the membership degrees of the

Subzones

Area of study

·Causes (“facts”)
·Impact of symptoms on causes

·Causes (“facts”)
·Impact of symptoms on causes

Figure 3: Subdivision in homogeneous subzones.

corresponding fuzzy sets (cf. input fuzzification process of
Figure 1). For each subzone, then the expert sets the most
significant equations and the values ai j of impact of the jth
cause to the ith symptom creating the SFRE (1). After the
determination of the set of maximal interval solutions by
using the algorithm of Section 2, the expert for each interval
solution calculates, for each unknown xj , the mean interval
solution XMaxM,t( j) with (6). The linguistic label Relt(os)
is assigned to the output variable os. Then he calculates the
reliability index Relt(O), given from formula (7), associated
to this maximal interval solution t. After the iteration of this
step, the expert determines the reliability index (7) for each
maximal interval solution, by choosing the output vector
O for which Rel(O) assumes the maximum value. Iterating
the process for all the subzones, the expert can show the
thematic map of each output variable. We schematize the
whole process in Figure 4.

We suppose to subdivide the area of study in P subzones.
The steps of the process are described below.

(i) In the spatial dataset, we associate k facts i1, . . . , ih to
every subzone.

(ii) For each input fact, a fuzzy partition in mf fuzzy
sets is created for every f = 1, . . . ,h. To each fuzzy
set, the expert associates a linguistic label. After the
fuzzification process, the expert determines the m
most significant equations, wherem ≤ m1+m2+· · ·+
mk. The input vector B = [b1, . . . , bm] is set, where
each component bi (i = 1, . . . ,m) is the membership
degree to the ith fuzzy set of the corresponding input
fact. To create the fuzzy partitions, we use TFNs (cf.
formulae (3), (4), (5)). The expert sets the impact
of the m symptoms to the n causes by defining the
impact matrix A with entries ai j with i = 1, . . . ,m,
j = 1, . . . ,n.

(iii) An SFRE (1) with m equations and n unknowns is
created. We use the algorithm from [8] to determine
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and the FLSE

solution
set by using the universal

Start

with greatest

For each subzone

are
values for the k
input facts

fuzzy set
corresponding to the unknown with

p ≤ P

Yes

No

Stop

To each output variable os s = 1, . . ., h,

The area of study in P
subzones is divided.

The impact matrix A is set.

is created.

The max interval

algorithm is

obtained.

obtained.

The max solution
reliability index is obtained.

A fuzzy
of each fact

partition of
the domain
is created.

The input vector B where
is the membership degree
of a fact to the i-th fuzzy
set is computed.

the linguistic label of the

maximal mean solution is assigned.

A thematic map of the area
of study for each cause
is created.

A◦X = B

bi

p := 0

p := p + 1

Figure 4: Flux diagram of the resolution problem.

all the solutions of (1). Thus we determine T maxi-
mal interval solutions.

(iv) max Relt := 0// (the maximal reliability is initialized
to 0).

(v) For each maximal interval solution Xmax,t, with t =
1, . . . ,T , we define the vector column XMeant via
formula (6).

(vi) Relt := 0.

(vii) For each output variable os, with s = 1, . . . , k,
if xj1 , . . . , xjs are the unknown associated to os, let
scoret(s) = max{XMeant( j1), . . . ,XMeant( js)}.

(viii) Relt := Relt + scoret(os).

(ix) Next s.

(x) Relt := Relt/k// (the reliability index is calculated via
formula (7)).

(xi) If Relt > maxRelt, then the linguistic label of the fuzzy
set corresponding to the unknown with maximum
mean solution is assigned to the output vector O =
[o1, . . . , ok].

(xii) Next t with t = 1, . . . ,T .

(xiii) Next p with p = 1, . . . ,P.

At the end of the process, the user can create a thematic
map of a specific output variable over the area of study and
also a thematic map of the reliability index value obtained
for the output variable. If the SFRE related to a specific
subzone is inconsistent, the expert can decide whether or not
eliminate rows to find solutions: in the first case, he decides
that the symptoms associated to the rows that make the
system inconsistent are not considered and eliminates them,
so reducing the number of the equations. In the second case,
he decides that the correspondent output variable for this
subzone remains unknown and it is classified as unknown
on the map.

4. Simulation Results

Here we show the results of an experiment in which we apply
our method to census statistical data agglomerated on four
districts of the east zone of Naples (Italy) (Figure 5). We use
the year 2000 census data provided by the ISTAT (Istituto
Nazionale di Statistica). These data contain information on
population, buildings, housing, family, employment work
for each census zone of Naples. Every district is considered
as a subzone with homogeneous input data given in Table 4.

In this experiment, we consider the following four output
variables: “o1 = Economic prosperity” (wealth and prosperity
of citizens), “o2 = Transition into the job” (ease of finding
work), “o3 = Social Environment” (cultural levels of citizens),
and “o4 = Housing development” (presence of building and
residential dwellings of new construction). For each variable,
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Figure 5: Area of study: four districts at east of Naples (Italy).

Table 3: Values of the TFNs low, mean, high.

Output
Low Mean High

INF MEAN SUP INF MEAN SUP INF MEAN SUP

o1 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0

o2 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0

o3 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0

o4 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0

Table 4: Input data obtained for the four subzones.

District i1 i2 i3 i4 i5 i6 i7

Barra 0.604 0.227 0.039 0.032 0.111 0.424 0.067

Poggioreale 0.664 0.297 0.060 0.051 0.086 0.338 0.149

Ponticelli 0.609 0.253 0.039 0.042 0.156 0.372 0.159

S. Giovanni 0.576 0.244 0.041 0.031 0.054 0.353 0.097

we create a fuzzy partition composed by three TFNs called
“low”, “mean”, and “high” presented in Table 3.

Moreover, we consider the following seven input param-
eters: i1 = percentage of people employed = number of
people employed/total work force, i2 = percentage of women
employed = number of women employed/number of people
employed, i3 = percentage of entrepreneurs and profession-
als = number of entrepreneurs and professionals/number of
people employed, i4 = percentage of residents graduated =
numbers of residents graduated/number of residents with
age > 6 years, i5 = percentage of new residential buildings =
number of residential buildings built since 1982/total num-
ber of residential buildings, i6 = percentage of residential
dwellings owned = number of residential dwellings owned/
total number of residential dwellings, and i7 = percentage of
residential dwellings with central heating system = number
of residential dwellings with central heating system/total
number of residential dwellings. In Table 4, we show these
input data for the four subzones.

For the fuzzification process of the input data, the expert
indicates a fuzzy partition for each input domain formed
from three TFNs labeled “low”, “mean”, and “high”, whose
values are reported in Table 5. In Tables 6 and 7, we show the
values obtained for the 21 symptoms b1, . . . , b21; moreover,
we report the input variable and the linguistic label of

the correspondent TFN for each symptom bi. In order to
form the SFRE (1) in each subzone, the expert defines the
equations by setting the impact values ai j by basing over the
most significant symptoms.

Now we illustrate this procedure for each subzone.

4.1. Subzone “Barra”. The expert chooses the significant
symptoms b2, b4, b5, b7, b10, b11, b15, b17, b18, b19, by
obtaining an SFRE (1) with m = 10 equations and n = 12
unknowns (Table 8).

The matrix A of the impact values ai j has dimensions
10 × 12 and the vector B of the symptoms bi has dimension
10×1 and both are given below. The SFRE (1) is inconsistent
and eliminating the rows for which the value IND( j) = 0, we
obtain four maximal interval solutions Xmax(t) (t = 1, . . . , 4)
and we calculate the vector columnXMeant on each maximal
interval solution. Hence we associate to the output variable
os (s = 1, . . . , 4), the linguistic label of the fuzzy set with the
higher value calculated with formula (6) obtained for the cor-
responding unknowns xj1 , . . . , xjs and given in Table 8. For
determining the reliability of our solutions, we use the index
given by formula (7). We obtain that Relt(o1) = Relt(o2) =
Relt(o3) = Relt(o4) = 0.6025 for t = 1, . . . , 4 and hence
Rel(O) = max{Relt(O) : t = 1, . . . , 4} = 0.6025 where O =
{o1, . . . o4}. We note that the same final set of linguistic labels
associated to the output variables o1 = “high”, o2 = “mean”,
o3 = “low”, and o4 = “low” is obtained as well. The relevant
quantities are given below.

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5 1.0 0.0 0.4 1.0 0.2 0.2 0.7 0.3 0.1 0.3 0.2

0.3 0.5 0.2 0.4 0.5 0.4 0.3 0.6 0.2 0.0 0.0 0.0

0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.0 0.0 0.0

1.0 0.2 0.0 0.8 0.3 0.1 0.8 0.2 0.2 0.3 0.0 0.0

0.5 0.3 0.1 0.6 0.4 0.1 0.6 0.4 0.1 0.1 0.0 0.0

0.3 0.7 0.3 0.3 0.7 0.3 0.2 0.7 0.3 0.1 0.2 0.1

0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.3 0.3

0.2 0.5 0.2 0.1 0.4 0.1 0.2 0.5 0.1 0.3 0.7 0.3

0.1 0.4 0.4 0.1 0.4 0.4 0.1 0.5 0.5 0.2 0.4 0.5

0.5 0.2 0.0 0.4 0.3 0.0 0.4 0.3 0.0 1.0 0.1 0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.98

0.36

0.63

1.00

0.40

0.60

0.10

0.59

0.41

1.00

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(33)
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Table 5: TFNs values for the input domains.

Input variable
Low Mean High

INF MEAN SUP INF MEAN SUP INF MEAN SUP

i1 0.00 0.40 0.60 0.40 0.60 0.80 0.60 0.80 1.00
i2 0.00 0.10 0.30 0.10 0.30 0.40 0.30 0.50 1.00
i3 0.00 0.04 0.06 0.04 0.06 0.10 0.07 0.20 1.00
i4 0.00 0.02 0.04 0.02 0.04 0.07 0.04 0.07 1.00
i5 0.00 0.05 0.08 0.05 0.08 0.10 0.08 0.10 1.00
i6 0.00 0.10 0.30 0.10 0.30 0.60 0.30 0.60 1.00
i7 0.00 0.10 0.30 0.10 0.30 0.50 0.30 0.50 1.00

Table 6: TFNs for the symptoms b1 ÷ b12.

Subzone
b1: i1 =

low
b2: i1=
mean

b3: i1 =
high

b4: i2 =
low

b5: i2 =
mean

b6: i2 =
high

b7: i3 =
low

b8: i3 =
mean

b9: i3 =
high

b10: i4 =
low

b11: i4 =
mean

b12: i4 =
high

Barra 0.00 0.98 0.02 0.36 0.63 0.00 1.00 0.00 0.00 0.40 0.60 0.00

Poggioreale 0.00 0.93 0.07 0.01 0.99 0.00 0.00 1.00 0.00 0.00 0.63 0.37

Ponticelli 0.00 0.91 0.05 0.23 0.76 0.00 1.00 0.00 0.00 0.00 0.93 0.07

S. Giovanni 0.12 0.88 0.00 0.28 0.72 0.00 0.95 0.05 0.00 0.45 0.55 0.00

Xmax(1) =

⎛

⎜
⎜
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⎜
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⎜
⎜
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⎜
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⎜
⎜
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[0.00, 0.36]

[0.00, 1.00]

[0.00, 0.36]

[0.00, 1.00]

[0.00, 0.36]

[0.41, 0.41]
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[0.00, 0.10]
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, Xmax(2) =
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Xmax(3) =
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0.05

0.05

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, XMean2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.40

0.18

0.50

0.36

0.50

0.18

0.50

0.18

0.41

1.00

0.05

0.05

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

XMean3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.40

0.18

0.50

0.18

0.50

0.36

0.50

0.18

0.18

1.00

0.05

0.05

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, XMean4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.40

0.18

0.05

0.36

0.50

0.18

0.50

0.36

0.41

1.00

0.05

0.05

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(34)

4.2. Subzone “Poggioreale”. The expert chooses the signifi-
cant symptoms b2, b5, b8, b11, b12, b14, b15, b17, b18, b19, b20,
by obtaining an SFRE (1) with m = 11 equations and n = 12
unknowns (Table 9). The matrix A of the impact values ai j
has dimension 11 × 12 and the vector B of the symptoms bi
has dimension 11 × 1 which are given below. The SFRE (1)



Advances in Fuzzy Systems 11

Table 7: TFNs for the symptoms b13 ÷ b21.

Subzone
b13: i5 =

low
b14: i5 =
mean

b15: i5
=high

b16: i6 =
low

b17: i6 =
mean

b18: i6 =
high

b19: i7 =
low

b20: i7 =
mean

b21: i7 =
high

Barra 0.00 0.00 0.10 0.00 0.59 0.41 1.00 0.00 0.00

Poggioreale 0.00 0.70 0.30 0.00 0.87 0.13 0.75 0.25 0.00

Ponticelli 0.00 0.00 1.00 0.00 0.76 0.24 0.70 0.30 0.00

S. Giovanni 0.87 0.13 0.00 0.00 0.82 0.18 1.00 0.00 0.00

Table 8: Final linguistic labels for the output variables in the district
Barra.

Output variable Score1(os) Score2(os) Score3(os) Score4(os)

o1 high high high high

o2 mean mean mean mean

o3 low low low low

o4 low low low low

is inconsistent and eliminating the rows for which the value
IND(j) = 0, we obtain 12 maximal interval solutions Xmax(t)

(t = 1, . . . , 12), and we calculate the vector column XMeant

on each maximal interval solution. The relevant quantities
are given below

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5 1.0 0.0 0.4 1.0 0.2 0.2 0.7 0.3 0.1 0.3 0.2

0.2 1.0 0.2 0.2 1.0 0.2 0.2 0.9 0.2 0.0 0.0 0.0

0.2 1.0 0.2 0.2 1.0 0.2 0.2 1.0 0.2 0.0 0.0 0.0

0.3 0.7 0.3 0.3 0.7 0.3 0.2 0.7 0.3 0.1 0.2 0.2

0.4 0.5 0.6 0.3 0.5 0.6 0.3 0.5 0.6 0.0 0.0 0.1

0.3 0.7 0.3 0.3 0.7 0.3 0.2 0.7 0.3 0.1 0.2 0.1

0.2 0.4 0.6 0.3 0.4 0.6 0.2 0.4 0.6 0.0 0.1 0.2

0.1 0.9 0.1 0.1 0.9 0.1 0.2 0.8 0.2 0.2 0.8 0.2

0.0 0.1 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.0 0.1 0.4

0.4 0.1 0.0 0.8 0.5 0.3 0.5 0.3 0.1 0.7 0.3 0.0

0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.3 0.6 0.2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.93

0.99

1.0

0.63

0.37

0.7

0.3

0.87

0.13

0.75

0.25

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(35)

Xmax(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.13, 0.13]

[0.75, 0.75]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.0, 0.13]

[0.0, 0.13]

[0.25, 0.25]

[0.0, 0.25]

[0.0, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Xmax(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.13, 0.13]

[0.75, 0.75]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 0.25]

[0.25, 0.25]

[0.0, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Xmax(3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.0, 0.13]

[0.75, 0.75]

[0.13, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.0, 0.13]

[0.0, 0.13]

[0.25, 0.25]

[0.0, 0.25]

[0.0, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Xmax(4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.0, 0.13]

[0.75, 0.75]

[0.13, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 0.25]

[0.25, 0.25]

[0.0, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Xmax(5) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.0, 0.13]

[0.75, 0.75]

[0.13, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.0, 0.13]

[0.0, 0.13]

[0.25, 0.25]

[0.0, 0.25]

[0.0, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Xmax(6) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.0, 0.13]

[0.75, 0.75]

[0.13, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 0.25]

[0.25, 0.25]

[0.0, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Table 9: Final linguistic labels for the output variables in the district Poggioreale.

Output
Score1

(os)
Score2

(os)
Score3

(os)
Score4

(os)
Score5

(os)
Score6

(os)
Score7

(os)
Score8

(os)
Score9

(os)
Score10

(os)
Score11

(os)
Score12

(os)

o1 low low low high low low low high low low low high

o2 low low low mean low low low mean low low low mean

o3 low low low low low low low low low low low low

o4 low mean low mean low mean low mean low mean low mean

Xmax(7) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.0, 0.13]

[0.75, 0.75]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.13, 0.13]

[0.0, 0.13]

[0.25, 0.25]

[0.0, 0.25]

[0.0, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Xmax(8) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.0, 0.13]

[0.75, 0.75]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.13, 0.13]

[0.0, 0.13]

[0.0, 0.25]

[0.25, 0.25]

[0.0, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Xmax(9) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.0, 0.13]

[0.75, 0.75]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.0, 0.13]

[0.13, 0.13]

[0.25, 0.25]

[0.0, 0.25]

[0.0, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Xmax(10) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.0, 0.13]

[0.75, 0.75]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.0, 0.13]

[0.13, 0.13]

[0.0, 0.25]

[0.25, 0.25]

[0.0, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Xmax(11) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.0, 0.13]

[0.75, 0.75]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.0, 0.13]

[0.0, 0.13]

[0.25, 0.25]

[0.0, 0.25]

[0.13, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Xmax(12) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[0.37, 0.37]

[0.0, 0.3]

[0.0, 0.13]

[0.75, 0.75]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 1.0]

[0.0, 0.13]

[0.0, 0.13]

[0.0, 0.25]

[0.25, 0.25]

[0.13, 0.13]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

XMean1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.37

0.15

0.13

0.75

0.065

0.065

0.5

0.065

0.065

0.25

0.125

0.05

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, XMean2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.37

0.15

0.13

0.75

0.065

0.065

0.5

0.065

0.065

0.125

0.25

0.065

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

XMean3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.37

0.15

0.065
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(36)

For determining the reliability of our solutions, we use the
index given by formula (7). We obtain Rel(Ok) = 0.4675 for
k = 1, . . . , 12. Then we obtain two final sets of linguistic

Figure 6: Thematic map for output variable o1 (Economic prosper-
ity).

Figure 7: Thematic map of the output variable o2 (Transition into
the job).

Figure 8: Thematic map for the output variable o3 (Social
Environment).

labels associated to the output variables: o1 = “low”, o2 =
“low”, o3 = “low”, o4 = “low”, and o1 = “low”, o2 = “low”,
o3 = “low”, o4 = “mean”, with a same reliability index value
0.4675. The expert prefers to choose the second solution:
o1 = “low”, o2 = “low”, o3 = “low”, o4 = “mean” because he
considers that in the last two years in this district the presence
of building and residential dwellings of new construction has
increased although marginally. We obtain four final thematic
maps shown in Figures 6, 7, 8, 9 for the output variable o1,
o2, o3, o4, respectively.

The results show that there was no housing development
in the four districts in the last 10 years, and there is difficulty
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Figure 9: Thematic map for the output variable o4 (Housing devel-
opment).
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Figure 10: Histogram of the reliability index Rel(O) for the four
subzones.

in finding job positions. In Figure 10, we show the histogram
of the reliability index Rel(O) for each subzone, where O =
[o1, o2, o3, o4].
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