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We introduce the classes of generalized difference bounded, convergent, and null sequences of fuzzy real numbers defined by
an Orlicz function. Some properties of these sequence spaces like solidness, symmetricity, and convergence-free are studied. We
obtain some inclusion relations involving these sequence spaces.

1. Introduction

The concept of fuzzy set theory was introduced by Zadeh
in 1965. Later on sequences of fuzzy numbers have been
discussed by Syau [1], Tripathy and Baruah [2], Tripathy and
Borgohain [3], Tripathy and Dutta [4, 5], Tripathy and Sarma
[6, 7], and many others.

Kizmaz [8] defined the difference sequence spaces �∞(Δ),
c(Δ), and c0(Δ) of complex numbers as follows:

Z(Δ) = {x = (xk) : (Δxk) ∈ Z}, for Z = �∞, c, c0,

where Δx = (Δxk) = (xk − xk+1).
(1)

The above spaces are Banach spaces, normed by

‖x‖Δ = |x1| + sup
k
|Δxk|. (2)

The idea of Kizmaz [8] was applied to introduce different
type of difference sequence spaces and study their different
properties by Et et al. [9], Tripathy et al. [10], Tripathy and
Baruah [2], Tripathy and Borgohain [3], Tripathy and Esi
[11], Tripathy et al. [12], Tripathy and Mahanta [13], and
many others.

Tripathy and Esi [11] introduced a new type of difference
sequence spaces as follows. Let m ∈ N be fixed, then

Z(Δm) = {x = (xk) : (Δmxk) ∈ Z}, for Z = �∞, c, c0,

where Δmx = (Δmxk) = (xk − xk+m).
(3)

The above sequence spaces are Banach spaces, normed by

‖x‖Δ =
m∑

r=1

|xr| + sup
k
|Δmxk|. (4)

Tripathy et al. [12] further generalized this notion and intro-
duced the following. For m ≥ 1 and n ≥ 1,

Z
(
Δn
m

) = {x = (xk) :
(
Δn
mxk

) ∈ Z
}

, for Z = �∞, c, c0,

where Δn
mxk = Δn−1

m xk − Δn−1
m xk+m, ∀k ∈ N.

(5)

This generalized difference has the following binomial
representation:

Δn
mxk =

n∑

r=0

(−1)r
⎛
⎝
n

r

⎞
⎠xk+rm. (6)
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An Orlicz function is a function M : [0,∞) → [0,∞),
which is continuous, nondecreasing, and convex with
M(0) = 0, M(x) > 0, for x > 0 and M(x) → ∞, as x → ∞
(one may refer to Korasnoselkii and Rutitsky [14]).

An Orlicz function M is said to satisfy Δ2-condition for
all values of x, if there exists a constant K > 0, such that
M(Lx) ≤ KLM(x), for all x > 0 and for L > 1.

Remark 1. An Orlicz function satisfies the inequalityM(λx) ≤
λM(x), for all λ with 0 < λ < 1.

Throughout the paper wF , �F , �F∞ represent the classes of
all, absolutely summable, and bounded sequences of fuzzy real
numbers, respectively.

2. Definitions and Background

Let C(Rn) = {A ⊂ Rn : A is compact and convex}. Then the
space C(Rn) has linear structure induced by the operations
A + B = {a + b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A} for
A, B ∈ C(Rn) and λ ∈ R.

The Hausdorff distance between A and B of C(Rn) is
defined as

δ∞(A,B) = max

{
sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
. (7)

It is well known that (C(Rn), δ∞) is a complete metric
space. A fuzzy real number on Rn is a function X : Rn →
I(= [0, 1]) associating each real number t ∈ Rn with its grade
of membership X(t).

A fuzzy real number X is called convex if X(t) ≥ X(s) ∧
X(r) = min(X(s),X(r)), where s < t < r.

If there exists t0 ∈ Rn such that X(t0) = 1, then the fuzzy
real number X is called normal.

A fuzzy real number X is said to be upper semicontinuous
if for each ε > 0, X−1([0, a + ε)), for all a ∈ I is open in the
usual topology of Rn.

The class of all upper semi-continuous, normal, convex
fuzzy real numbers is denoted by Rn(I). Let X ∈ Rn(I), then
the α-level set Xα, for 0 < α ≤ 1, is defined by, Xα = {t ∈
Rn : X(t) ≥ α} and is a nonempty compact convex subset of
Rn. The 0-level set, that is, X0, is the closure of strong 0-cut,
that is, X0 = cl{t ∈ Rn : X(t) > 0}. The absolute value of
X ∈ R(I), that is, |X|, is defined by

|X|(t) =
⎧
⎨
⎩

max{X(t),X(−t)}, for t ≥ 0,

0, otherwise.
(8)

For r ∈ Rn, r ∈ Rn(I) is defined as,

r(t) =
⎧
⎨
⎩

1, for t = r,

0, otherwise.
(9)

The additive identity and multiplicative identity of Rn(I)
are denoted by θ and e, respectively, where θ = (0, 0, . . . , 0)
and e = (1, 1, . . . , 1). The zero sequence of fuzzy real numbers
is denoted by ϑ = {θ, θ, . . . , θ, . . .}.

The linear structure of C(Rn) induces the addition X +Y
and scalar multiplication λX , λ ∈ R in terms of α-level sets,
by [X + Y]α = [X]α + [Y]α and [λX]α = λ[X]α, for each
0 < α ≤ 1, where

λX(t) =
⎧
⎨
⎩

0, for λ = 0,

X
(
λ−1t

)
, otherwise.

(10)

Define, for each 1 ≤ q <∞,

dq(X ,Y) =
(∫ 1

0
δ∞(Xα,Yα)qdα

)1/q

(11)

and d∞ : Rn(I) × Rn(I) → R such that d∞(X ,Y) =
sup0<α≤1δ∞(Xα,Yα), where δ∞ is the Hausdorff metric.
Clearly, d∞(X ,Y) = limq→∞dq(X ,Y) with dq ≤ dr if q ≤ r.
Moreover (Rn(I),d∞) is a complete, separable, and locally
compact metric space.

A sequence X = (Xk) of fuzzy real numbers is said to
converge to the fuzzy number X0, if for every ε > 0, there
exists k0 ∈ N such that d∞(Xk,X0) < ε, for all k ≥ k0.

A sequence space E is said to be solid if (Yn) ∈ E,
whenever (Xn) ∈ E and |Yn| ≤ |Xn|, for all n ∈ N .

Let X = (Xn) be a sequence, then S(X) denotes the set
of all permutations of the elements of (Xn), that is, S(X) =
{(Xπ(n)) : π is a permutation of N}. A sequence space E is
said to be symmetric if S(X) ⊂ E for all X ∈ E.

A sequence space E is said to be convergence-free if (Yn) ∈
E whenever (Xn) ∈ E and Xn = θ implies Yn = θ.

A sequence space E is said to be monotone if E contains
the canonical preimages of all its step spaces.

Lemma 2. A class of sequences E is solid which implies that E
is monotone.

Lindenstrauss and Tzafriri [15] used the notion of Orlicz
function and introduced the sequence space:

�M =
⎧
⎨
⎩(xk) ∈ w :

∞∑

k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

⎫
⎬
⎭.

(12)

The space �M with the norm,

‖(xk)‖ = inf

⎧
⎨
⎩ρ > 0 :

∞∑

k=1

M

(
|xk|
ρ

)
≤ 1

⎫
⎬
⎭, (13)

becomes a Banach space, which is called an Orlicz sequence
space. The space �M is closely related to the space �p, which is
an Orlicz sequence space with M(x) = xp, for 1 ≤ p <∞.

In the later stage different classes of Orlicz sequence
spaces were introduced and investigated by Altin et al. [16],
Et et al. [9], Tripathy et al. [10], Tripathy and Borgohain
[3], Tripathy and Hazarika [17], Tripathy and Mahanta [13],
Tripathy and Sarma [6, 7, 18], and many others.



Advances in Fuzzy Systems 3

In this paper we introduce the following difference se-
quence spaces:

�F∞
(
M,Δn

m

) =
⎧
⎨
⎩(Xk) ∈ wF : sup

k

⎛
⎝
d∞
(
Δn
mXk, θ

)

ρ

⎞
⎠ <∞,

for some ρ > 0

⎫
⎬
⎭

cF
(
M,Δn

m

) =
{

(Xk) ∈ wF : lim
k→∞

(
d∞
(
Δn
mXk,L

)

ρ

)
= 0,

for some ρ > 0,L ∈ Rn(I)

}

cF0
(
M,Δn

m

) =
⎧
⎨
⎩(Xk) ∈ wF : lim

k→∞

⎛
⎝
d∞
(
Δn
mXk, θ

)

ρ

⎞
⎠ = 0,

for some ρ > 0

⎫
⎬
⎭.

(14)

3. Main Results

Theorem 3. The classes of sequences �F∞(M,Δn
m), cF(M,Δn

m),
cF0 (M,Δn

m) are complete metric spaces by the metric

η(X ,Y) =
mn∑

r=1

d∞(Xr ,Yr)

+ inf

{
ρ > 0 : sup

k
M

(
d∞
(
Δn
mXk,Δn

mYk
)

ρ

)
≤ 1

}
,

(15)

for X , Y ∈ �∞(M,Δn
m)F , cF(M,Δn

m), cF0 (M,Δn
m).

Proof. We establish the result for the class of sequences
�F∞(M,Δn

m). The proof for the other cases will follow similarly.
It can easily be verified that �F∞(M,Δn

m) is a metric space by
the metric η defined above. Next we show that it is a complete
metric space.

Let (X (i)) be a Cauchy sequence in �F∞(M,Δn
m) such that

X (i) = (X (i)
n )

∞
n=1. Let ε > 0 be given. For a fixed x0 > 0, choose

r > 0 such that M(rx0/2) ≥ 1. Then there exits a positive
integer n0 = n0(ε) such that

η
(
X (i),X ( j)

)
<

ε

rx0
, ∀i, j ≥ n0. (16)

By the definition of η, we have,

mn∑

r=1

d∞
(
Xr

(i),Xr
( j)
)

+inf

⎧
⎪⎨
⎪⎩
ρ > 0 : sup

k
M

⎛
⎝
d∞
(
Δn
mX

(i)
r ,Δn

mX
( j)
r

)

ρ

⎞
⎠ ≤ 1

⎫
⎪⎬
⎪⎭
≤ ε,

∀i, j ≥ n0,
(17)

which implies

mn∑

r=1

d∞
(
X (i)
r ,X

( j)
r

)
< ε, ∀i, j ≥ n0,

=⇒ d∞
(
X (i)
r ,X

( j)
r

)
< ε, ∀i, j ≥ n0, r = 1, 2, 3, . . . ,mn.

(18)

Hence (X (i)
r ), for r = 1, 2, 3, . . . ,mn are Cauchy sequence

in Rn(I) and hence are convergent in Rn(I), since Rn(I) is a
complete metric space.

Let

lim
i→∞

X (i)
r = Xr , for r = 1, 2, 3, . . . ,mn. (19)

Also,

sup
k
M

⎛
⎝
d∞
(
Δn
mX

(i)
k ,Δn

mX
( j)
k

)

ρ

⎞
⎠ ≤ 1, ∀i, j ≥ n0,

=⇒M

⎛
⎝
d∞
(
Δn
mX

(i)
k ,Δn

mX
( j)
k

)

η
(
X (i),X ( j)

)

⎞
⎠ ≤ 1 ≤M

(
rx0

2

)
,

∀i, j ≥ n0.

(20)

Since M is continuous, we get,

d∞
(
Δn
mX

(i)
k ,Δn

mX
( j)
k

)
≤ rx0

2
· η
(
X (i),X ( j)

)
, ∀i, j ≥ n0,

=⇒ d∞
(
Δn
mX

(i)
k ,Δn

mX
( j)
k

)
<
rx0

2
· ε

rx0
= ε

2
, ∀i, j ≥ n0,

=⇒ d∞
(
Δn
mX

(i)
k ,Δn

mX
( j)
k

)
<

ε

2
, ∀i, j ≥ n0,

(21)

which implies (Δn
mX

(i)
k ) is a Cauchy sequence in Rn(I) and so

is convergent in Rn(I), since Rn(I) is complete metric space.

Let limiΔn
mX

(i)
k = Yk (say), in Rn(I), for each k ∈ N .

We have to prove that

lim
i
X (i) = X , X ∈ �F∞

(
M,Δn

m

)
. (22)

For k = 1, we have, from (6) and (19),

lim
i→∞

X (i)
mn+1 = Xmn+1, for m ≥ 1, n ≥ 1. (23)
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Proceeding in this way inductively, we get

lim
i→∞

X (i)
k = Xk, for each k ∈ N. (24)

Also, limiΔn
mX

(i)
k = Δn

mXk, for each k ∈ N .

Next taking j → ∞, keeping i fixed, and by the continuity
of M, we have the following from (20):

sup
k
M

⎛
⎝
d∞
(
Δn
mX

(i)
k ,Δn

mXk

)

ρ

⎞
⎠ ≤ 1, for some ρ > 0.

(25)

Now on taking the infimum of such ρ’s, we get

inf

⎧
⎨
⎩ρ > 0 : sup

k
M

⎛
⎝
d∞
(
Δn
mX

(i)
k ,Δn

mXk

)

ρ

⎞
⎠ ≤ 1

⎫
⎬
⎭ < ε,

∀i ≥ n0
(
by(2)

)
.

(26)

Hence from (17) on taking limit as j → ∞, we get

mn∑

r=1

d∞
(
X (i)
r ,Xr

)

+ inf

⎧
⎨
⎩ρ > 0 : sup

k
M

⎛
⎝
d∞
(
Δn
mX

(i)
k ,Δn

mXk

)

ρ

⎞
⎠ ≤ 1

⎫
⎬
⎭

< ε + ε = 2ε, ∀i ≥ n0,
(27)

which implies

η
(
X (i), X

)
< 2ε, ∀i ≥ n0. (28)

That is, limiX (i) = X .
Next we show that X ∈ �F∞(M,Δn

m).
We know that

d∞
(
Δn
mXk, θ

)
≤ d∞

(
Δn
mX

(i)
k ,Δn

mXk

)
+ d∞

(
Δn
mX

(i)
k , θ

)
.

(29)

Since M is continuous and nondecreasing, so we get

sup
k
M

⎛
⎝
d∞
(
Δn
mXk, θ

)

ρ

⎞
⎠ ≤ sup

k
M

⎛
⎝
d∞
(
Δn
mX

(i)
k ,Δn

mXk

)

ρ

⎞
⎠

+ sup
k

M

⎛
⎝
d∞
(
Δn
mX

(i)
k , θ

)

ρ

⎞
⎠ <∞,

(30)

which implies X ∈ �F∞(M,Δn
m).

Hence �F∞(M,Δn
m) is a complete metric space.

The other cases can be established similarly.

This completes the proof of the theorem.

Result 1. The classes of sequences �F∞(M, �n
m), cF(M, �n

m),
cF0 (M, �n

m), are neither solid nor monotone in general.

Proof. The result follows from the following example.

Example 4. Consider the sequence space �F∞(M,Δn
m). Let m =

2 and n = 3. Let M(x) = |x|, for all x ∈ [0,∞).

Consider the sequence (Xk) defined by

Xk(t) =
⎧
⎨
⎩

1, for k ∈ N , t = (k, k, k, . . .),

0, otherwise.
(31)

Then,

Δ3
2Xk(t) =

⎧
⎨
⎩

1, for k ∈ N , t = (0, 0, 0, . . .),

0, otherwise.
(32)

Then, we have d∞(Δ3
2Xk, θ) = 0, for all k ∈ N .

Hence, we have

sup
k
M

⎛
⎝
d∞
(
Δ3

2Xk, θ
)

ρ

⎞
⎠ <∞, for some ρ > 0, (33)

which implies (Xk) ∈ �F∞(M,Δ3
2).

Consider the sequence (αk) of scalars defined by

αk =
⎧
⎨
⎩

1, for k = i2, i ∈ N ,

0, otherwise.
(34)

For k = i2, we have

αkXk(t) =
⎧
⎨
⎩

1, t = (k, k, k, . . .),

0, otherwise.
(35)

For k /= i2, we have

αkXk(t) =
⎧
⎨
⎩

1, t = (0, 0, 0, . . .),

0, otherwise,
(36)

which implies

supk M

⎛
⎝
d∞
(
Δ3

2Xk, θ
)

ρ

⎞
⎠ = ∞, for each ρ > 0. (37)

Hence (αkXk) /∈ �F∞(M,Δ3
2).

Thus, �F∞(M, �n
m) is not solid in general.

Similarly the other cases can be established. The classes
of sequences are not monotone followed by Lemma 2.

Result 2. The classes of sequences �F∞(M, �n
m), cF(M, �n

m),
and cF0 (M, �n

m) are not symmetric in general.

Proof. The result follows from the following example.

Example 5. Let m = 2 and n = 1. Let M(x) = x2, for all
x ∈ [0,∞). Consider the sequence (Xk) defined by

Xk(t) =
⎧
⎨
⎩

1, for k ∈ N , t = (k, k, k, . . .),

0, otherwise.
(38)
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Then,

Δ2Xk(t) =
⎧
⎨
⎩

1, for k ∈ N , t = (−2,−2,−2, . . .),

0, otherwise.
(39)

Then, d∞(Δ2Xk, 0) = 1, for all k ∈ N , which shows
(Xk) ∈ cF(M,Δ2) ⊂ �F∞(M,Δ2).

Let (Yk) be a rearrangement of (Xk) such that
(Yk) = (X1,X2,X4,X3,X9,X5,X16,X6,X25, . . .). Then we get
d∞(Δ2Yk, 0) ≈ k−(k − 1)2 ≈ k2, for all k ∈ N , which implies

sup
k
M

(
d∞
(
Δ2Yk, 0

)

ρ

)
= ∞, for each fixed ρ > 0. (40)

Hence, (Yk) /∈ �F∞(M,Δ2).

Thus the classes of sequences �F∞(M,Δn
m), cF(M,Δn

m), and
cF0 (M,Δn

m) are not symmetric in general.

Note 1. For m = n = 0, the class of sequences �F∞(M) and
cF(M) are symmetric. For m ≤ 1 and n ≤ 1, the class of
sequences cF0 (M,Δn

m) is symmetric.

Proposition 6. The classes of sequences �F∞(M,Δn
m), cF(M,

Δn
m), cF0 (M,Δn

m) are not convergence-free in general.

Proof. The result follows from the following example.

Example 7. Let m = 4 and n = 1. Let M(x) = x3, for all
x ∈ [0,∞). Consider the sequence (Xk) defined by

Xk(t) =
⎧
⎪⎨
⎪⎩

1, for k ∈ N , t =
(

1
k

,
1
k

,
1
k

, . . .
)

,

0, otherwise.
(41)

Then,

Δ4Xk(t)

=
⎧
⎪⎨
⎪⎩

1, for k∈N , t =
(

4
k(k + 4)

,
4

k(k + 4)
,

4
k(k + 4)

, . . .
)

,

0, otherwise.
(42)

Hence we have d∞(Δ4Xk, θ) = 4/k(k + 4), which implies
(Xn) ∈ cF0 (M,Δ4) ⊂ cF(M,Δ4) ⊂ �F∞(M,Δ4).

Consider the sequence (Yk) defined by

Yk(t) =
⎧
⎨
⎩

1, for k ∈ N , t = (k2, k2, k2, . . .
)
,

0, otherwise,
(43)

so that

Δ4Yk(t)

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, for k ∈ N ,

t = (−(8k + 16),−(8k + 16), . . .),

0, otherwise.

(44)

Thus d∞(Δ4Yk, θ) = 8k+ 16, for all k ∈ N , which implies

sup
k
M

⎛
⎝
d∞
(
Δ4Yk , θ

)

ρ

⎞
⎠ = ∞, for some ρ > 0. (45)

Thus (Yk) /∈ �F∞(M,Δ4).
Hence the classes of sequences �F∞(M,Δn

m), cF(M,Δn
m),

cF0 (M,Δn
m) are not convergence-free in general.

Theorem 8. Let M, M1, and M2 be Orlicz functions satisfying
Δ2-condition. Then, for Z = �F∞, cF , and cF0 ,

(i) Z(M1,Δn
m) ⊆ Z(M◦M1,Δn

m),

(ii) Z(M1,Δn
m)∩ Z(M2,Δn

m) ⊆ Z(M1 + M2,Δn
m).

Proof. (i) Let (Xk) ∈ Z(M1,Δn
m). Consider ε > 0 and η > 0

such that ε =M(η).
Then,

M1

(
d∞
(
Δn
mXk,L

)

ρ

)
< η, for some ρ > 0. (46)

Let

Yk =M1

(
d∞
(
Δn
mXk,L

)

ρ

)
, for some ρ > 0. (47)

Since M is continuous and non-decreasing, we get

M(Yk) =M

(
M1

(
d∞
(
Δn
mXk,L

)

ρ

))
< M

(
η
) = ε,

for some ρ > 0,

(48)

which implies (Xk) ∈ Z(M◦M1,Δn
m).

This completes the proof.

(ii) Let (Xk) ∈ Z(M1,Δn
m)∩ Z(M2,Δn

m).

Then,

M1

(
d∞
(
Δn
mXk,L

)

ρ

)
< ε, for some ρ > 0,

M2

(
d∞
(
Δn
mXk,L

)

ρ

)
< ε, for some ρ > 0.

(49)

The proof follows from the equality

(M1 + M2)

(
d∞
(
Δn
mXk,L

)

ρ

)

=M1

(
d∞
(
Δn
mXk,L

)

ρ

)
+ M2

(
d∞
(
Δn
mXk,L

)

ρ

)
,

< ε + ε = 2ε, for some ρ > 0,

(50)

which implies that (Xk) ∈ Z(M1 + M2,Δn
m).

This completes the proof.

Proposition 9. One has Z(M,Δi
m) ⊂ Z(M,Δn

m), for 0 ≤ i <
n, for Z = �F∞, cF , and cF0 .
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Proof. Let (Xk) ∈ �F∞(M,Δn−1
m ). Then we have,

sup
k≥1

M

⎛
⎝
d∞
(
Δn−1
m Xk, θ

)

ρ

⎞
⎠ <∞. (51)

Now we have

sup
k≥1

M

⎛
⎝
d∞
(
Δn
mXk, θ

)

ρ

⎞
⎠

= sup
k≥1

M

⎛
⎝
d∞
(
Δn−1
m Xk − Δn−1

m Xk+m, θ
)

ρ

⎞
⎠

≤ 1
2

sup
k≥1

M

⎛
⎝
d∞
(
Δn−1
m Xk, θ

)

ρ

⎞
⎠

+
1
2

sup
k≥1

M

⎛
⎝
d∞
(
Δn−1
m Xk+m, θ

)

ρ

⎞
⎠ <∞.

(52)

Proceeding in this way, we have Z(M,Δi
m) ⊂ Z(M,Δn

m),
for 0 ≤ i < n, for Z = �F∞, cF , and cF0 .

This completes the proof.
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of generalized difference Cesàro sequence spaces,” Soochow
Journal of Mathematics, vol. 31, no. 3, pp. 333–340, 2005.

[13] B. C. Tripathy and S. Mahanta, “On a class of generalized lacu-
nary difference sequence spaces defined by Orlicz functions,”
Acta Mathematicae Applicatae Sinica, vol. 20, no. 2, pp. 231–
238, 2004.

[14] M. A. Korasnoselkii and Y. B. Rutitsky, Convex Functions and
Orlicz Functions, P. Noordhoff, Groningen, The Netherlands,
1961.

[15] J. Lindenstrauss and L. Tzafriri, “On orlicz sequence spaces,”
Israel Journal of Mathematics, vol. 10, no. 3, pp. 379–390, 1971.

[16] Y. Altin, M. Et, and B. C. Tripathy, “The sequence space
|NP|(M, r, q, s) on seminormed spaces,” Applied Mathematics
and Computation, vol. 154, no. 2, pp. 423–430, 2004.

[17] B. C. Tripathy and B. Hazarika, “Some I-convergent sequence
spaces defined by Orlicz functions,” Acta Mathematicae Appli-
catae Sinica, vol. 27, no. 1, pp. 149–154, 2011.

[18] B. C. Tripathy and B. Sarma, “Vector valued double sequence
spaces defined by orlicz function,” Mathematica Slovaca,
vol. 59, no. 6, pp. 767–776, 2009.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


