
Research Article
Deep Neural Learning Adaptive Sequential Monte Carlo for
Automatic Image and Speech Recognition

PatcharinKamsing ,1PeerapongTorteeka,2WuttichaiBoonpook,3andChunxiangCao4,5

1Air-Space Control, Optimization and Management Laboratory, Department of Aeronautical Engineering,
International Academy of Aviation Industry, King Mongkut’s Institute of Technology, Ladkrabang, Bangkok 10520, +ailand
2National Astronomical Research Institute of +ailand, ChiangMai 50180, +ailand
3Department of Geography, Faculty of Social Sciences, Srinakharinwirot University, Bangkok 10110, +ailand
4State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences,
Beijing 100101, China
5University of Chinese Academy of Sciences, Beijing 100094, China

Correspondence should be addressed to Patcharin Kamsing; patcharin.ka@kmitl.ac.th

Received 22 May 2020; Revised 18 August 2020; Accepted 22 September 2020; Published 7 October 2020

Academic Editor: Jun He

Copyright © 2020 Patcharin Kamsing et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

To enhance the performance of image classification and speech recognition, the optimizer is considered an important factor for
achieving high accuracy. (e state-of-the-art optimizer can perform to serve in applications that may not require very high
accuracy, yet the demand for high-precision image classification and speech recognition is increasing. (is study implements an
adaptive method for applying the particle filter technique with a gradient descent optimizer to improve model learning per-
formance. Using a pretrained model helps reduce the computational time to deploy an image classification model and uses a
simple deep convolutional neural network for speech recognition. (e applied method results in a higher speech recognition
accuracy score—89.693% for the test dataset—than the conventional method, which reaches 89.325%. (e applied method also
performs well on the image classification task, reaching an accuracy of 89.860% on the test dataset, better than the conventional
method, which has an accuracy of 89.644%. Despite a slight difference in accuracy, the applied optimizer performs well in this
dataset overall.

1. Introduction

Soft computing is available in several applications due to its
usefulness in modeling and optimization. Numerous studies
have focused on image and video processing with objectives
such as detection and tracking. Various models have been
proposed, including neural networks, deep learning, fuzzy
logic, and hybrid methods [1]. However, their practical use
in applications remains problematic because many appli-
cations require higher accuracy than the available models
can supply. Hybrid methods that combine two or more soft
computing techniques can often enhance the efficiency of
image and video retrieval processes [2]. In an image context,
a 3D geographical information system (GIS) data plan for

the WiMax network was integrated to optimize both the
network performance and the investment costs, both of
which are relevant to the required number of base stations
and sectors [3]. In addition, soft computing plays an im-
portant role in GIS research [4–7]. One important aspect of
implementing soft computing is the quality of the dataset.
Soft computing can also be used to generate meaningful and
human-interpretable big datasets by defining an interface
between the numerical and categorical spaces, i.e., the data
definition and the linguistic space of human reasoning [8].
Furthermore, datasets applied to investigate soft computing
methods should use a benchmark dataset intended for
validating various methods [1]. One example of applying soft
computing for decision making was presented [9]; this is a
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new method named the neurofuzzy analytical network
process. (e presented method works based on both fuzzy
logic and an artificial neural network. Another imple-
mentation of soft computing was proposed for tunneling
optimization [10]. (is model analyzes the relationship
between the target tunneling responses and the impact of
input parameters, including both geometrical and geological
factors. (e proposed implementation is useful in reaching
robust and low-cost soft computing solutions in the mining
industry [11]. Soft computing can be applied in environ-
mental management to predict vehicular traffic noise using
data such as the volume per hour, percentage of heavy
vehicles, and average speed of vehicles as inputs to neural
networks or random forests [12]. Six methods are used for
modeling soil water capacity parameters that are important
in environmental management of targeted areas [13]. In the
aviation industry, a multilayer perceptron neural network is
employed to diagnose aerospace structure defects: the
classical method uses signal processing and data interpre-
tation [14]. Soft computing has also been implemented in
path categorization of airplanes [15]. Soft computing can
also be applied for estimating the position and orientation of
spacecraft, which is useful for space technology development
[16].

Image classification and speech recognition remain
demanding research topics, since they can be applied in
various applications [17]. One example of an image classi-
fication method is a graph-based multiple rank regression
model [18], for which the researchers presented a method
that can reduce the losses in matrix data correlations that
occur when an image is transformed into a vector suitable
for image classification processes. An integrated recurrent
neural network and a convolutional neural network (CNN),
named the multipath x-D recurrent neural network
(MxDRNN), has been proposed for image classification [19].
In addition, semisupervised deep neural networks imple-
ment a robust loss function to enhance image classification
performance [20], and hyperspectral image classification has
been widely used in many earth observation tasks, including
object detection, object recognition, and surveillance. A new
joint spatial-spectral hyperspectral image classification
method based on differently scaled two-stream convolu-
tional networks and spatial enhancement achieved improved
classification performance [21]. Image classification for very
high-resolution imagery (VHRI) is another challenging task
because of the rich detail captured in the images. Many
studies have focused on object-based convolutional neural
networks (OCNNs) and proposed various innovations, such
as integrating a multilevel context-guided classification
method with an OCNN to achieve higher VHRI classifi-
cation accuracy [22]. Image classification techniques have
also been applied to medical applications such as breast
cancer screening through histopathological imaging [23]. In
addition, speech recognition research is useful for native
language tasks, such as the implementation of deep neural
networks for the Algerian dialect [24] and for code-
switching among Frisian languages [25]. Other speech
recognition research has concentrated on recognizing
emotion from speech with regard to age and sex using hi-
erarchical models [26]. A new approach for speech recog-
nition based on the specific coding of time and frequency
characteristics of speech using CNNs has been presented
[27]. Visual object tracking by using an exponential quan-
tum particle filter and mean shift optimization has been
presented as an another challenge for object tracking [28].

(e appliedmethod employs the particle filter technique,
a state estimation technique, to optimize the gradient

Figure 1: Example of images in the PlanesNet dataset labeled as the
“plane” category.

Figure 2: Example of images in the PlanesNet dataset labeled as the
“no-plane” category.
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Figure 3: Working process of a particle filter.
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descent optimizer. State estimation is often used in navi-
gation and guidance applications and has sometimes been
applied to other optimization methods. For example, for
real-time traffic estimation, state estimation has been
implemented using an extended Kalman filter instead of
using Gaussian process regression models with respect to
historical data [29]. A particle filter has also been imple-
mented to adjust various parameters to improve image
classification [30–32] and for some application such as crack

propagation filtering [33]. (e gradient descent algorithm is
mainly used to optimize an objective [34]. For instance, it
was used to implement a demonstration of a morphing
wing-tip for an aircraft to reduce low-speed drag [35].
(ermal power plants use state estimation to optimize
various parameters [36]. (e adaptive technique presented
in this paper, which combines a particle filter with the
gradient descent optimizer to adjust and improve the per-
formance on image classification and speech recognition
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iterations?

Obtain the coefficient parameter

Yes

No

Figure 4: Working processes of the applied method.

Table 1: Results of the applied method and the gradient descent optimizer for image classification.

Method Mean accuracy (%) Mean cross entropy Final test accuracy (%)
(e applied method (50, 50) 87.4291 0.3196 89.482
(e applied method (150, 100) 87.3806 0.3199 89.482
(e applied method (180, 300) 87.4269 0.3193 89.860
(e gradient descent method 87.4073 0.3200 89.644
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tasks, is evaluated using the PlanesNet [37] and TensorFlow
speech recognition challenge [38] datasets.

2. Materials and Methods

2.1. Materials

2.1.1. PlanesNet Dataset. Future airport designs should
provide improved passenger convenience, such as reducing
airplane delays or requiring less check-in time. Air traffic
management, as the backbone of the aviation industry, is one
factor leading airports to become more intelligent [17].
Airplane detection is a fundamental task in tracking, po-
sitioning, and predicting the positions of airplanes. Pla-
nesNet is a medium-resolution, labeled, remote sensing
image dataset that can serve as training data for training
machine learning algorithms [37]. (e dataset consists of
20× 20 RGB images labeled as “plane” or “no-plane” as
shown in Figures 1 and 2, respectively. (e “plane” images
mainly consist of the wings, tail, and nose of the airplane.
(e images labeled “no-plane” may include land cover
features such as water, vegetation, bare earth, or buildings
and do not show any part of an airplane. Some example
image data are presented in the following figures.

2.1.2. Speech Commands Dataset. Another dataset adopted
in this study for testing the appliedmethod is a public dataset
for single word speech recognition, which was initially
compiled for use in the TensorFlow Speech Recognition
Challenge [38]. (e dataset consists of audio files in which a
single speaker says one word. (e objective is to predict the
audio files in the testing dataset, which are categorized in one
of twelve categories: “silence,” “unknown,” “yes,” “no,” “up,”

“down,” “left,” “right,” “on,” “off,” “stop,” and “go.” It should
be noted that the applied method is based on a CNN, which
is normally applied to 2D spatial problems. In contrast,
audio is inherently a one-dimensional continuous signal
across time. (e dataset was preprocessed into images by
defining a time window into which the spoken words fit;
then, the captured audio signal is converted into an image by
grouping the incoming audio samples into short segments,
just a few milliseconds long, and calculating the strength of
the frequencies across a set of bands. Each set of frequency
strengths from a segment is treated as a vector of numbers,
and those vectors are arranged in time sequence to form a
two-dimensional array. (is array of values can then be
treated such as a single-channel image called a spectrogram.

2.2. Methods. (e applied method is implemented based on
a combination of a particle filter and minibatch gradient
descent optimizer processes as expressed in equation (1)
with the goal of obtaining a suitable optimizer for the target
dataset:

θ � θ − η · gθJ θ; x
(i: i+n)

; y
(i: i+n)

􏼐 􏼑, (1)

where θ is the weight, η is the learning rate, and gθ is a
gradient of the cost function J(θ) with respect to weight
changes. Stochastic gradient descent (SGD) performs a
parameter update after processing each training example x(i)

and label y(i), which means that the batch size is 1. (e cost
function in minibatch gradient descent is the average over a
small data batch, which usually ranges in size between 50 and
256, but can vary depending on the application.

(e applied method uses a generated particle process in
combination with variables from the minibatch gradient
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Figure 5: Image classification performance: (a) accuracy after each learning step; (b) cross entropy after each learning step.
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descent optimizer. Consequently, the applied optimizer
performs updates by using the computed variables instead of
the conventional variables from the minibatch gradient
descent optimizer. (e applied method can be expressed as
shown in the following equation:

θ � θ − η · gθJ θ; x
(i: i+n)

; y
(i: i+n)

􏼐 􏼑 + K × learning rate􏼐 􏼑,

(2)

where K is an adjustment value obtained from the particle
filter process. K is multiplied by the deep learning rate before
being added to the second equation term of the conventional

minibatch gradient descent optimizer in equation (1). Fig-
ure 3 illustrates the working process of a particle filter. It
works based on historical information from the prior stage.
PF works iteratively by generating a particle, propagating it
to the next time step t, and then performing an update to
obtain an accurate value of the time step. A workflow of the
applied method to obtain the K value is depicted in Figure 4.

(e applied method shown in Figure 4 is described as
follows [32]:

(1) Initialization: at t � 0, generate n particles, and set
their weights to xi

0 � x0, πi
0 � 1/n􏼈 􏼉
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Figure 6: Confusion matrix: (a) the applied method (50, 50); (b) the applied method (150, 100); (c) the applied method (180, 300); (d) the
gradient descent method.

Table 2: Results of the applied method and the gradient descent optimizer for speech recognition.

Method Mean accuracy (%) Mean cross entropy Final test accuracy (%)
(e applied method (50, 50) 77.8163 0.6772 89.693
(e applied method (150, 100) 77.4286 0.6900 89.059
(e applied method (180, 300) 77.2724 0.6952 89.141
(e gradient descent method 77.4950 0.6853 89.325
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(2) For t � 1, · · · , end

(a) Input the particle set
xi

t−1, π
i
t−1􏼈 􏼉

n

i�1 to obtain the output 􏽢xi
t|t−1 by using

the system model equation, which is determined
by the particle plus a value from the Gaussian
process with zero mean and whose variance is
equal to the deep learning rate

(b) Predict the observation value 􏽢zi
t|t−1 by using 􏽢xi

t|t−1
with the measurement value assigned based on
the mean of the prior iteration

(c) Update the particle weight based on the obser-
vation vector zt by ht(·) or the observation
model, which is set to 1. Calculate the impor-
tance weight using
πi

t � p(zt | 􏽢xi
t|t−1), i � 1, · · · , n.

(d) Normalize the weights according to
􏽥πi

t � πi
t/􏽐

n
j�1 π

j
t . Particle rejection or retention

depends on the weight (πi
t) and multinomial

resampling, which is determined by the resam-
pling algorithm.

3. Results and Discussion

3.1. Image Classification Result. (is experiment uses the
inception_v3 model, which is a pretrained model intended
for image classification applications. (e PlanesNet dataset
deployed in this experiment has a total of 18,085 images
divided into two classes (7,995 “plane” images and 10,090
“no-plane” images). (e data are divided into a training set
with 14,377 images and a testing set with 3,708 images. (e
training batch size is set to 100, the leaning rate is 0.001, and
the deep learning computation requires 10,000 epochs.

(e results of the applied method are compared with
those of the conventional gradient descent optimizer. (e
applied method shows three cases (with different numbers of

particles and particle filter iterations in parentheses). (e
results of the applied method and those of the gradient
descent optimizer for image classification in Table 1 reveal
that iterations using the applied method (180, 300) achieve
the best performance as measured by the mean cross entropy
in every iteration (0.3193) and by the final test accuracy
(89.860%). (e applied method (50, 50) achieves the best
performance with regard to mean accuracy (87.4291%),
which is calculated after every iteration.

(e accuracy and cross entropy after each deep learning
iteration are shown in Figure 5. (e graphs do not clearly
express different model efficiencies because the performance
improves only slightly as shown in Table 1. However, both
accuracy and cross entropy (Figures 5(a) and 5(b), respec-
tively) present the values of the corresponding trends for the
applied method and the conventional method.

(e confusion matrices for all cases are shown in Fig-
ure 6, clearly revealing that the applied method with 180
particles and 300 particle filter iterations achieves the best
prediction result for the category of “no-plane;” however, it
shows poor prediction results for the “plane” category. (e
confusion matrices for the other three results in Figures 6(a),
6(b), and 6(d) show no large differences in either the “plane”
or the “no-plane” categories. (ese results imply that dif-
ferences in the number of particles and the number of it-
erations in the particle filter affect the overall performance of
the applied method. (us, each application should select the
most appropriate model based on user requirements and
acceptable model accuracy.

3.2. SpeechRecognitionResult. A simple deep CNN is used in
this experiment to generate a model for the audio file. (e
models are trained for 25,000 epochs with a batch size of 100
and a learning rate of 0.001. (e audio files include 105,829
individual files: 100,939 in the training dataset and 4,890 in
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Figure 7: Speech recognition performance: (a) accuracy after each learning step; (b) cross entropy after each learning step.
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the testing dataset. Similar to the image classification ex-
periment, this experiment compares the results of the ap-
plied method under different numbers of particles and
particle filter iterations with the results from the conven-
tional minibatch gradient descent optimizer.

(e results are presented in Table 2, which show that the
applied method (50, 50) achieves exceptional performance
compared to the other models and obtains the best mean
accuracy (77.8163%), mean cross entropy (0.6772), and final
test accuracy (89.693%). (e conventional minibatch gra-
dient descent optimizer is the second best. From these re-
sults, we can conclude that the applied method configured
with an appropriate number of particles and particle filter
iterations can achieve a better performance than the

conventional method. (e accuracy and cross entropy re-
sults after each iteration are illustrated in Figure 7, which did
not reveal obvious overall differences; therefore, the im-
provements are listed in Table 2. Confusion matrices are
presented in Figure 8. (e applied method (50, 50) shows
exceptional performance on the “no,” “right,” and “off”
classes. However, the conventional method achieves the best
performance on the “yes,” “down,” and “go” classes. (e
other two versions of the applied method achieve a good
performance on the “unknown” class. Finally, the applied
method (150, 100) achieves the best results on the “left” and
“on” classes.

(e overall results of the speech recognition experiment
show that the applied method performs better than the
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Figure 8: Confusion matrices: (a) the applied method (50, 50); (b) the applied method (150, 100); (c) the applied method (180, 300); (d) the
gradient descent method.
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conventional method in terms of both accuracy and cross
entropy. However, the confusion matrix results should be
considered in detail before selecting the most suitable model
for a given application.

(e overall performance of using the applied method
with image classification and speech recognition provides
better accuracy. However, confusion matrices for both
image classification and speech recognition illustrate some
failure cases that remain a challenging task for further re-
search. (is is a very important consideration for some
applications that require high precision of image classifi-
cation, such as in the health care industry, or high precision
of speech recognition, such as in rescue processes.(erefore,
the applied method in this experiment, based on state es-
timation and a well-known optimizer, is helpful to slightly
improve performance in both applications. To apply this
method in practical applications, more consideration of
acceptable cases and failure cases using confusion matrices is
required to reach optimal performance.

4. Conclusions

(e goal of this study was to use the particle filter technique
to optimize a variable in a gradient descent optimizer. (e
applied method was validated by applying it to two different
types of public datasets: the PlanesNet dataset (for image
classification) and the Speech Commands dataset (for speech
recognition). Moreover, three variations of the applied
method that use different numbers of particles and different
numbers of iterations were tested on those two datasets: the
three model variations used 50 particles and 50 particle filter
iterations, 150 particles and 100 particle filter iterations, and
180 particles and 300 particle filter iterations, respectively.
(e overall results show that the applied method achieves
exceptional performances on both datasets, obtaining higher
accuracy and lower cross entropy than the conventional
method. (e experiments also showed that the number of
particles and the number of iterations used in the particle
filter process affect the model’s overall performance.
(erefore, to build a high-accuracy model, appropriate
parameter values should be selected for the particle filter
process in the applied method according to each application.
A confusion matrix can be used as an assistive tool to select
the most suitable model for a given application.
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