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Prediction of water resources for future years takes much attention from the water resources planners and relevant authorities.
However, traditional computational models like hydrologic models need many data about the catchment itself. Sometimes these
important data on catchments are not available due to many reasons. +erefore, artificial neural networks (ANNs) are useful soft
computing tools in predicting real-world scenarios, such as forecasting future water availability from a catchment, in the absence
of intensive data, which are required for modeling practices in the context of hydrology. +ese ANNs are capable of building
relationships to nonlinear real-world problems using available data and then to use that built relationship to forecast future needs.
Even though Sri Lanka has an extensive usage of water resources for many activities, including drinking water supply, irrigation,
hydropower development, navigation, and many other recreational purposes, forecasting studies for water resources are not being
carried out. +erefore, there is a significant gap in forecasting water availability and water needs in the context of Sri Lanka. +us,
this paper presents an artificial neural network model to forecast the inflows of one of the most important reservoirs in northern
Sri Lanka using the upstream catchment’s rainfall. Future rainfall data are extracted using regional climate models for the years
2021–2050 and the inflows of the reservoir are forecasted using the validated neural network model. Several training algorithms
including Levenberg–Marquardt (LM), BFGS quasi-Newton (BFG), scaled conjugate gradient (SCG) have been used to find the
best fitting training algorithm to the prediction process of the inflows against the measured inflows. Results revealed that the LM
training algorithm outperforms the other tests algorithm in developing the prediction model. In addition, the forecasted results
using the projected climate scenarios clearly showcase the benefit of using the forecasting model in solving future water resource
management to avoid or to minimize future water scarcity. +erefore, the validated model can effectively be used for proper
planning of the proposed drinking water supply scheme to the nearby urban city, Jaffna in northern Sri Lanka.

1. Introduction

Water is the livelihood of civilization. +e demand for
usable water is always high in any community; therefore,
this has made many conflicts in the history. Whether they
are recorded or not in a reliable way, the history of conflicts
for water extends up to the civilization of humans [1–4].
Demand for various water usages made these conflicts
more significant. Negotiation among different stakeholders
brings different aspects to water usage and they can initiate
different issues. For example, some people might argue that
the priority should be given to drinking water rather than
agriculture. However, farmers might argue that the priority

should be given to them as they are living closer to the
particular water resources. +erefore, conflicts for water
may even happen between communities of the same
country.

On the other hand, Sri Lanka as a country has faced
many conflicts due to water over the history [5–8], even
though the country has many water resources. It is a water-
rich country. It has managed its water resources well over the
past. However, there are several incidents where the conflicts
are brought to the society by various stakeholders. Water
resources management in the Iranamadu reservoir, which is
in the northern part of Sri Lanka, is one of such cases to
showcase the water conflicts in Sri Lanka.
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At the same time, climate change and climate vari-
abilities have done many adverse impacts to the water re-
sources not only to Sri Lanka but also all over the world.
Some countries, like Ethiopia, Somalia, Djibouti, Eritrea,
Kenya, and Slovakia, have experienced arid weather patterns
[9, 10], while some other countries, like the United King-
dom, Sri Lanka, Lithuania, and Myanmar, have experienced
intensified precipitation events [11, 12]. +e adverse impacts
of these extreme climate events have influenced water supply
systems [13], sewer systems [14], agriculture [15], hydro-
power development [16], and transportation [17]. However,
triggering natural disasters like landslides, floods, and tor-
rential winds brings more weight to the problem.

In addition, the impact of climate change has been
witnessed in many other multiple sectors. For example,
significantly higher temperatures, which were the cause of
heat waves, have damaged the ecosystems, human health,
and agriculture in European regions [18–20]. In addition, it
was showcased that increasing atmospheric temperatures
has significantly decreased the agricultural productivity in
Pakistan [21]. On the other hand, freezing temperatures due
to climate change have damaged the agricultural yield
[22, 23]. Not only the losses in agriculture due to climate
change, but also there is plenty of evidence in many other
areas for the impact of climate change, including biodi-
versity, water resources, and hydropower.

+erefore, proper planning and management of water
resources is a must for the future world. +e projected
climatic scenarios can be used to identify the available water
resources for future years, and thus, appropriate measures
can be preplanned. +ese measures might not have to be
perfect; however, an acceptable accuracy would grab the
interest of many stakeholders. +erefore, prediction or
forecast of inflows to a reservoir is highly important.

Time series inflow prediction in reservoirs is an im-
portant task (probably the most important) in controlling the
storage of a reservoir. +us, it is a necessary activity to
manage the water resources for various downstream tasks
including drinking water supply, hydropower development,
and irrigation. +ere are several ways of predicting the
inflow to the systems starting from simplified tank models
[24–27] to unsteady hydrological routing models [28–32].
Literature shows these approaches are clustered into em-
pirical, conceptual, physical, and data-driven models
[33–36]. However, usage of artificial neural networks has
introduced a reasonably new approach (compared to the
traditional computational models) in predicting catchment
inflows without using many physical catchment data.

Forecasting techniques are varied from one catchment to
another catchment depending on the available catchment
characteristics. In addition to that, data availability plays a
major role in the accuracy of the forecasting models [37, 38].
Furthermore, different computational models have different
modeling accuracies in the forecasting process.

Some researchers have combined genetic algorithms and
ANN to predict the inflows to reservoirs [39]. Results from
Sedki et al. [39] have shown that the hybrid models com-
bining genetic algorithms to ANN outperform the tradi-
tional ANNs. However, a well-trained ANN model can still

be a useful tool to predict the inflow to a reservoir at low
computational cost. In addition, ANNs do not need sta-
tionary variables to be stationary and normally distributed
compared to classical stochastic modeling [40, 41]. Fur-
thermore, ANNs are comparably stable for the various
noises in the measured data [42]. Also, ANNs are capable of
modeling complex and nonlinear hydrological processes
[43]; having a self-adjusting ability to the data [44], needing a
limited knowledge of the hydrological process [45], easy
integration to other models [43], and less demand in
computational cost are few other advantages of ANNs in
hydrological processes.

Nevertheless, inflow predictions using ANNs have some
disadvantages too. Nonstationary data have some impacts to
the predictions [46, 47]. +e extreme events in meteorology
may not be captured in the predictions.+erefore, the inflow
predictions may misguide the planners and authorities. In
addition, the seasonal effects of rainfall can adversely impact
the quality of the predictions [48].

However, despite several disadvantages, literature gives
many examples of inflow prediction using ANNs [49–54]
due to their advantages. Many researchers have used dif-
ferent types of algorithms in predicting inflows using
ANNs. For example, Kişi [55] has used four different al-
gorithms, including backpropagation, conjugate gradient,
cascade correlation, and Levenberg–Marquardt in their
streamflow predictions. However, the usage of ANN to
predict inflows in Sri Lanka is quite new. Only a handful of
number of research has been done to Sri Lanka in the same
manner [56, 57]. Basnayake et al. [56] have developed a
model to forecast the monthly inflow to one of the major
reservoirs in the wet zone of Sri Lanka. +ey have used
nonlinear autoregressive with exogenous input (NARX-
ANN) neural network; however, they have not presented
their model with the projected climatic cases for future
years. Apart from the studies by Basnayake et al. [56, 57],
the authors could not find related research in the context of
Sri Lanka. In addition, the importance of such study is
visible, when there are conflicts in the water usages in the
dry zone of the country.

+erefore, it is timely important to conduct a hydro-
logical catchment analysis to predict the inflow of the Ira-
namadu reservoir and thus to investigate the cultivation
capacity of the Iranamadu reservoir in the upcoming de-
velopment projects under the ongoing climate change
scenarios. +us, this paper presents the soft computing
techniques in finding the relationships between the catch-
ment’s rainfall and the inflow to the Iranamadu reservoir.
+e conventional method of flow calculation, hydrological
catchment modeling, was not conducted here due to two
important reasons: unavailability of various data and
complexity of the real-world hydrological models in the
absence of various required data, including a dense network
of rain gauges, timelymeasured streamflows, soil infiltration,
and evaporation. +e obtained relationship was then used to
forecast the Iranamadu inflow for the years 2021–2050 from
the projected climate scenarios. +e future climate data were
extracted from regional climate models using the Coordi-
nated Regional Downscaling Experiment (CORDEX).
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+e results presented here reveal the importance of such
a study in the context of data unavailability and the usage of
the developed model in future water management in the
Iranamadu reservoir.

2. Study Area and Its Water Scarcity Issues

Iranamadu reservoir is the largest reservoir in northern Sri
Lanka and can be considered one of the most important
reservoirs in that area. +e reservoir is nutrified by the
Kanakarayan Aru, a 86 km long river, which starts from
Semamadu Kulam in Vavuniya district. As it was already
stated, conflicts have aroused in the area due to the water
resources of this reservoir. +e irrigational water supply
from the reservoir is comparably significant as many other
reservoirs in Sri Lanka. +e reservoir caters around
8000–10000 ha of paddy fields in the region.

Sri Lanka practices two cultivation seasons, namely,
Maha and Yala seasons. Maha is the major cultivating season
whereas Yala is the minor season. Maha season starts in
September and lasts until March of the next year. However,
Yala season starts in May and ends in August. +e season
itself is treated to be a minor season due to low irrigational
water availability during the drier months.

Figure 1 shows the cultivated land areas and the re-
spective paddy harvests over the years for Maha (see
Figure 1(a)) and Yala (see Figure 1(b)) seasons (Maha and
Yala are the two major agricultural seasons of the country).
Even though there is no connectivity from one year to
another, dashed lines are used to showcase the variation
clearly. +ere were no cultivations during the 2008 to 2009
years due to intensified war activities in the region. However,
since 2009, the area was well cultivated.+is is an advantage;
which Sri Lanka is enjoying because of the end of the war
conflict. +e figures reveal a greater correlation between the
cultivated land areas and paddy harvest. However, there are
drops in both cultivated land areas and harvest (for example:
in 2012 and 2016 in Maha season and in 2014, 2016, 2017,
and 2018 in Yala season). +e main reason for this was the
unavailability of water resources in the Iranamadu reservoir
due to the severe drought conditions in the area.

Iranamadu tank was the first new tank to be built by the
Department of Irrigation, Sri Lanka, other than restoration
of ancient irrigational tanks [59].+is tank with a catchment
area of 588 km2 was built damming two low-lying swamps of
the Kanakarayan Aru. +e construction of Iranamadu tank
with a capacity of 49 million cubic meters (MCM) was
initiated in 1902 by the Department of Irrigation and the
tank dam was raised to hold a capacity of 88 MCM in 1951.
+e dam was further raised by 2 feet in 1954 and that in-
creased the capacity to 101 MCM. +e dam was raised from
time to time and now it is at the height of 34m (from mean
sea level (MSL)). +e tank can now hold water up to 148
MCM [60]. It is clearly evident the importance of the tank to
Kilinochchi area from these time-to-time dam height rises.
+e water is mainly used for irrigational purposes and the
demand for the irrigational water has increased with time
(see Figure 1).

3. Future Climate Data Extraction

Regional climate models (RCMs) are numerical prediction
models, which use the boundary conditions of global climate
models (GCMs). RCMs are developed in the interests of
localized regions rather than globally. +ere have been in-
creasing trends in using regional climate models (RCMs) for
climate change impact studies due to the fine resolution in
between 12 and 50 km when compared to coarse resolution
in between 100 and 250 km of global climate models
(GCMs). Yet, these RCMs inherit significant biases due to
imperfect conceptualization, internal climatic variability,
discretization, and spatial averaging within grid cells
[61–63]. Bias correction methods including linear scaling
method, quantile mapping, and local intensity scaling can be
used to reduce the biases in climatic datasets [62]. +e bias
correction process is usually carried out because of limited
spatial resolution and simplified physics of the models. In
addition, the physics of the world is yet to be revealed, and
thus, the models usually produced some biased future cli-
mate data.

ACCESS_CCAM, MPI_ESM_CCAM, CNRM_CCAM,
and REMO2009 are four RCMs, which were developed by
the Commonwealth Scientific and Industrial Research Or-
ganization (CSIRO) of spatial resolution 0.5 ° × 0.5 ° [64, 65]
from Coordinated Regional Downscaling Experiment
(CORDEX). +e driving GCMs of these RCMs are ACCESS
1.0, MPI_ESM_LR, CNRM_CM5, and ECHAM-4 GCM
[66, 67], respectively. Climatic data of CORDEX are avail-
able through https://www.cordex.org/. +ese RCMs are
widely used for climate studies. +e climatic data for the
years 1976–2100 are available in RCMs, comprising a his-
torical period in between 1976 and 2005 and future period
between 2006 and 2100.

4. Forecasting Model Development

Rainfall data for three rain gauging stations placed inside the
catchment area of Iranamadu reservoir (naming Olumadu,
Iranamadu, and Mankulam) were obtained from the De-
partment of Irrigation, Sri Lanka. In addition, the inflows to
the reservoir were collected from the same department for 30
years from 1959 to 1989. Most of the rainfall data are missing
after 1989 due to various reasons, mainly the war in this area
until 2009. In addition, the Mankulam rain gauge has not
functioned well in recent years. +erefore, the authors have
to rely on the monthly rainfall data and reservoir inflow data
for the period of 1959 to 1989. During this period, the
missing data percentage is less than 10% (Olumadu—0%,
Iranamadu—6.9%, and Mankulam—1.9%). +e annual
variations of the rainfall in three gauges are given in Figure 2.
As they were expected, zigzag variations can be observed in
all three annual rainfall variations. +e annual rainfalls were
interconnected along the time axis to show the temporal
variations, even though the annual rainfalls are not
interconnected.

Inflow to the Iranamadu reservoir from Kanakarayan
Aru based on the rainfall of three rain gauges was modeled
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using catchment’s rainfall in the ANN environment. +e
relationship is given in the following equation:

Inflow � ϕ Rain falli( 􏼁, (1)

where ϕ is the nonlinear function in between inflow and
rainfall and i represents the rain gauges. 70% of the data was
fed to ANN architecture to train the neural network, whereas
15% was used to validate the trained neural network and
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Figure 2: Rain gauges and rainfall variation over the years.
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Figure 1: Paddy harvest with respect to the cultivated area in Kilinochchi district (data source: [58]). (a) For Maha season and (b) for Yala season.
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another 15% to test the validated neural network. +e
feedforward neural network (FFNN) was in this study.
FFNN works in one direction (forward) from inputs to
outcome through the hidden nodes. +ere is no feedback in
the FFNN and it is the simplest form of ANNs. However,
they can still be effectively used to model complex scenarios.

+e developed ANN model was trained using seven
algorithms, namely, BFGS quasi-Newton (BFG), Fletch-
er–Reeves conjugate gradient algorithm (CGF), scaled
conjugate gradient (SCG), Polak–Ribiére conjugate gradient
(CGP), conjugate gradient with Powell/Beale restarts (CGB),
Levenberg–Marquardt (LM), and resilient backpropagation
(RP) algorithms. +ese algorithms are widely used in real-
world problems [68–70]. +e problem was tested on these
seven ANN algorithms to check their suitability and stability
in the specified application. More information on these
algorithms can be found in Perera et al. [71].

+e trained ANN model was saved for the future fore-
casting process. +e ANN prediction process was validated
using the data from 1999 to 2000.+is process was carried out
to revalidate the developed model using available rainfall data
for a future period from themodel development.+emonthly
rainfall data of the stations Iranamadu and Olumadu were
readily available whereas the data for Mankulam station were
not available. In addition, Iranamadu inflow data were
available for this period.+erefore, 1999–2000 two years were
selected to do the prediction validation of the ANN model.
+e missing rainfall days were filled with gridded precipi-
tation datasets from APHRODITE’s (Asian Precipitation
Highly Resolved Observational Data Integration Towards
Evaluation of Water Resources) precipitation dataset [72, 73].
+e precipitation data related to the location of Mankulam
(9.13700N, 80.44520E) were extracted from APHRODITE’s
dataset (available at http://aphrodite.st.hirosaki-u.ac.jp/) us-
ing ARCGIS (version 10.4). +e validity of the APHRODITE
dataset for Mankulam was checked before the application.
+e data from APHRODITE and the observed data were
compared for 10 years (1979–1989). +e resulting Pearson
correlation coefficient (0.7916) obtained was greater than
0.75, and hence, the dataset from APHRODITE was used to
extract monthly rainfall data of Mankulam station for the
years 1999 and 2000.

+e monthly rainfall data for 1999–2000 were fed to the
developed ANN model and derived the streamflows to the
corresponding months as the predicted streamflows. +ese
predicted streamflows were then compared against the
measured streamflows for the 1999–2000 time.

After the prediction validation, rainfall data for 30 years
from 2020 to 2050 were extracted from four regional climate
models (namely, ACCESS_CCAM, MPI_ESM_CCAM,
CNRM_CCAM, and REMO2009) for Iranamadu, Olumadu,
and Mankulam. Two Representative Concentration Path-
ways (RCP4.5 and RCP8.5) were used for rainfall data ex-
traction. +e RCPs are greenhouse gas emission
concentration trajectories adopted by the IPCC [74]. +ese
two RCPs were selected based on their emission scenarios.
RCP4.5 is a medium emission scenario and RCP8.5 high
emission scenario. More details on RCP scenarios can be
found in Van Vuuren et al. [75].

Linear scaling method (LS) [76] was used to remove
biases in the rainfall data. +e linear scaling approach as-
sumes that the correction algorithm and parametrization of
historical climate will remain stationary for future climatic
conditions. Previous studies demonstrate that LS approach
performs well for coarse temporal scale analysis as more
complicated methods such as quantile mapping, delta
change, and power transformation [77, 78]. Mathematical
formulations for bias correction in precipitation are given in
equations (2) and (3). +e linear scaling correction was
applied at all stations individually.

P
∗
his(d) � Phis(d) ×

μm Pobs(d)( 􏼁

μm Phis(d)( 􏼁
, (2)

P
∗
sim(d) � Psim(d) ×

μm Pobs(d)( 􏼁

μm Phis(d)( 􏼁
, (3)

where ∗, his, obs, sim, P, and d stand for bias-corrected data,
raw RCM hindcast, observed data, raw RCM-corrected data,
precipitation, and daily, respectively. μm is the long-term
monthly mean of the precipitation data. +e corrected
rainfall data were then fed to the saved ANN to predict the
future inflows to the Iranamadu reservoir.

5. Results and Discussion

Table 1 presents the coefficient of correlation and perfor-
mances of each training algorithms in the ANN analyses. It
can be clearly observed that all algorithms have performed
well in the context of correlation coefficients. +ey are al-
most 1 for validation and more than 0.8 for all other cases.
+ese values are acceptable in the time-dependent highly
nonlinear climate analyses [79–82]. However, out of them,
LM algorithm has outperformed other training algorithms
in the computational performance (highlighted in grey). It
has given better results in less computational time (8 epochs)
and lowest mean squared error (MSE� 6.14). +erefore, LM
training algorithm was selected for the prediction analyses.

Figure 3 gives the illustrations of the correlation coef-
ficients of LM algorithm in training, validation, test, and all
cases. It can be understood that the prediction is well val-
idated in the developed ANN architecture. +e results are
scattered along the 45° line (ideal match) for all cases.
+erefore, this observation validates the procedure, which
was used in this analysis.

Figure 4 presents the predicted (from ANNmodel) inflow
to the Iranamadu reservoir against the actual measured
inflow for the years 1999–2000. +e trend line drawn to the
data scatter has a coefficient of determination of 0.954
(which is almost 1). +at means the trend line almost gives
the real feeling of the data scatter. In addition, the equation
to the linear trend line drawn is given in the figure itself. In
fact, if the predicted inflow has a perfect match to the
measured inflow, the equation of the line should be y � x
(predicted inflow�measured inflow). However, this is the
ideal match. +e trend line gives an inclination of 0.826
(which is equal to 39.5 degrees). +erefore, the prediction is
slightly lower than the actual measured inflow. In addition,
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the graph has an MSE of 16.11 MCM. Even though there is a
slight deviation, the results show a validation to a greater
extent.

+e bias-corrected annual rainfalls for three rain gauging
stations are given in Figure 5 (Iranamadu (Figure 5(a)),
Mankulam (Figure 5(b)), and Olumadu (Figure 5(c))). +e
figures give the projected rainfall for two RCPs, which were
considered in this analysis. +e variations are given in

dashed lines for a clear understanding of the temporal
variations of the rainfall, even though there is no connec-
tivity of rainfall from one year to the next year. As it is
expected, annual rainfall variations show a zigzag pattern.
Years 2041 and 2045 are two possible extreme years for
RCP4.5 scenario. Heavy rainfalls are projected for the year
2041 for all three stations whereas lowest rainfalls are pre-
dicted for the year 2045. However, interestingly, RCP8.5
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Figure 3: Correlation coefficients for LM algorithm: (a) for training, (b) for validation, (c) for test, and (d) for all (combining training,
validation, and testing).

Table 1: ANN results from different training algorithms.

Algorithm
Correlation coefficients Performance

Training Validation Test All MSE Epochs
BFG 0.986 0.978 0.97 0.983 10.17 21
CGF 0.847 0.978 0.825 0.861 47.01 15
SCG 0.98 0.988 0.981 0.981 7.41 66
CGP 0.978 0.957 0.957 0.971 21.19 12
CGB 0.973 0.977 0.961 0.972 13.33 17
LM 0.989 0.989 0.947 0.983 6.14 8
RP 0.977 0.97 0.947 0.971 11.52 40
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scenario gives a different projection for the year 2045. In-
stead of the lowered rainfall projections, higher rainfalls can
be projected in all three stations. +ese are projected ob-
servations where a detailed research is essential to comment.
However, planners can use these projections for their future
activities based on the rainfall.

In addition to the annual projections, monthly rainfall
projections are also obtained. +e projected rainfall for the

year 2021 over the months (see Figures 6(a) for RCP4.5 and
6(b) for RCP8.5) are given under the secondary data in the
Appendix section. Heavy rainfalls can be expected in the
months of October to December in both RCP scenarios. +e
northern area of Sri Lanka receives its maximum rainfall
during the northeastern monsoon, which is practiced from
December to February. However, the higher rainfalls are
projected in the 2nd intermonsoon period (October to
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Figure 5: Projected annual rainfall variation from 2021 to 2050: (a) for Iranamadu, (b) for Mankulam, and (c) for Olumadu.
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November). +erefore, this is interesting as farmers are
getting ready for the new cultivation season.

Local farmers usually state that the rainy seasons are
shifted in recent years. +is is not scientifically proved yet.
However, that statement with the observations in monthly
variations is to be researched in detail for sound conclu-
sions. Interestingly, RCP8.5 scenario projects another
rainfall peak in April for all three stations. +is is in the 1st
intermonsoon (March to April), where usually a direr
period is observed in northern Sri Lanka. +erefore, it
would be better to conduct a detailed research along the
lines of the impact of climate change on water resources in
the Iranamadu area.

+e most important finding of this research, inflow to
the Iranamadu reservoir forecast, is illustrated in Figure 7
(see Figure 7(a) for RCP4.5 scenario and Figure 7(b) for
RCP8.5). +e projected inflows from the years 2021 to 2050
are presented. Annual inflows are not interconnected;
however, they were presented by the dashed lines for clarity
of the variations. Not only the annual forecasts but also the

monthly inflow forecasts are obtained in this research.
However, they are not presented here due to space
limitations.

Inflow forecasts clearly showcase the importance of
future water management in the Iranamadu reservoir.
Several peaks and troughs can be visible in the inflow. Peaks
can easily lead to flooding in the area due to the non-
contoured area. However, the drought seasons would be
tough in managing water as there is water scarcity in the
drier seasons. +erefore, proper planning is required, and
the results of this analysis can be used.

+e available statistics show that the average annual
inflow to the Iranamadu reservoir between the years 1958
and 2014 is 143MCM. However, the forecasts projected that
to be 154 MCM for RCP4.5 and 178 MCM for RCP8.5.
+erefore, the average annual inflow (from 2021 to 2050) to
the Iranamadu reservoir can be higher compared to that
from 1958 to 2014. Nevertheless, as stated, the demand for
the water from the Iranamadu reservoir has been increased
over the years and projected to increase.
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Figure 7: Inflow prediction to the Iranamadu reservoir from 2021 to 2050. (a) For RCP4.5 and (b) for RCP8.5.
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Figure 6: Monthly rainfall variations in the year 2021. (a) For RCP4.5 and (b) for RCP8.5.
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In addition, there is a proposal to transfer a significant
amount of water (27000m3/day) from the Iranamadu res-
ervoir to northern city, Jaffna. +erefore, the water man-
agement strategies would have to be rearranged in the
Iranamadu reservoir to cater to these new demands. If not
there may be some conflicts among the farmers and the
water distribution planners for the water in the Iranamadu
reservoir.

Conflicts may be further increased with the population
growth. More agricultural lands would be utilized to cater to
the food industry, whereas more drinking water will be
required in increasing population. +erefore, these are
critical issues to be handled at extremely careful levels.

6. Conclusions

Artificial neural network model under the LM algorithm has
outperformed all other training algorithms in the inflow
prediction model. +erefore, the inflow prediction model
from Kanakarayan Aru to the Iranamadu reservoir in
northern Sri Lanka is set under the LM training algorithm.
+e validation process of the inflows from the predicted and
measured data reveals the accuracy and robustness of the
prediction model. +erefore, the model can be used to
forecast the inflows to Iranamadu under any future climate
scenarios. +e results reveal its applicability only for 2 tested
RCPs; however, depending on the requirement, the model
can be successfully used. +e inflow forecast in the coming
30 years is highly important to the water resources managers
to deal with the conflicts among various stakeholders under
the water scarcities.+erefore, the forecast can be used in the
planning of future arrangements to develop the water dis-
tribution network to the Jaffna city. In addition, the water
resources in this dry area can be utilized in a sustainable
manner among various stakeholders including farmers in
the area. Proper crop management can be introduced to the
farmers based on the future inflow availability. +erefore,
the results from this research are highly important to the
water resources managers and planners in the provincial
council and the local authorities.
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[55] Ö. Kişi, “Streamflow forecasting using different artificial
neural network algorithms,” Journal of Hydrologic Engi-
neering, vol. 12, no. 5, pp. 532–539, 2007.

[56] N. Basnayake, D. Attygalle, L. Liyanage, and K. Nandalal,
“Ensemble forecast for monthly reservoir inflow; a dynamic
neural network approach,” in Proceedings of the 4th Annual
International Conference on Operations Research and Statistics
(ORS 2016), pp. 1–8, Singapore, January 2016.

[57] N. Basnayake, L. Liyanage, D. Attygalle, and K. Nandalal,
“Effective water management in the mahaweli reservoir
system; analyzing the inflow of the upmost reservoir,” in
Proceedings of the International Symposium for Next Gener-
ation Infrastructure; MART Infrastructure Facility, pp. 1–6,
Wollongong, Australia, October 2013.

[58] Department of Census and Statistics, Paddy Statistics, http://www.
statistics.gov.lk/agriculture/Paddy%20Statistics/PaddyStats.htm, 2020.

[59] S. Arumugum, Water Resources of Ceylon its Utilization and
Development, Water Resources Board, Sri Lanka, Colombo,
Sri Lanka, 1st edition, 1969.

[60] NPC, Sri Lanka Status Report of Iranamadu Tank as of 28.01.2019,
https://np.gov.lk/status-report-of-iranamadu-tank-as-of-28-01-2019/,
Northern Provincial Council, Vavuniya, Sri Lanka, 2019, https://np.
gov.lk/status-report-of-iranamadu-tank-as-of-28-01-2019/.

[61] J. Christensen, F. Boberg, O. Christensen, and P. Lucas-
Picher, “On the need for bias correction of regional climate
change projections of temperature and precipitation,” Geo-
physical Research Letters, vol. 35, pp. 1–6, 2008.

[62] C. Teutschbein and J. Seibert, “Bias correction of regional
climate model simulations for hydrological climate-change
impact studies: review and evaluation of different methods,”
Journal of Hydrology, vol. 456-457, pp. 12–29, 2012.

[63] O. Varis, T. Kajander, and R. Lemmelä, “Climate and water:
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