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­is paper presents a general Semantic Smart World framework (SSWF), to cover the Migratory birds’ paths. ­is framework 
combines semantic and big data technologies to support meaning for big data. In order to build the proposed smart world framework, 
technologies such as cloud computing, semantic technology, big data, data visualization, and the Internet of ­ings are hybrid. 
We demonstrate the proposed framework through a case study of automatic prediction of air quality index and di�erent weather 
phenomena in the di�erent locations in the world. We discover the association between air pollution and increasing weather 
conditions. ­e experimental results indicate that the framework performance is suitable for heterogeneous big data.

1. Introduction

Migratory birds can move from one place to another without 
borders between countries; so, we need to use the concept of 
“Smart World”. Big data can serve the world in “Smart World” 
challenges. Most of these challenges are related to data 
management. ­e most cited problems are privacy issues and 
dealing with the heterogeneity of world data. An important 
issue is how to build a generic smart world framework to 
support all dimensions of any city regardless of its size and 
characteristics.

­e rapid evolution of Information and Communication 
Technologies (ICT) and the Internet of ­ings (IoT) has 
impacted cities in the physical infrastructure, buildings, 
transportation systems, governance, environmental 
monitoring, healthcare, etc. ­e integration of devices, 
platforms, and applications using ICT is of great signi�cance 
to smart cities [1].

­e expression “Smart City” has many di�erent de�ni-
tions. Some authors de�ne a Smart City as the integration of 
social, physical, and IT infrastructure to improve the quality 
of city services. Other authors focus on a set of Information 
and Communication Technology (ICT) tools to integrate the 
Smart City environment [2].

City computing is a process of acquisition, integration, 
and analysis of a huge amount of heterogeneous data generated 
by diverse sources in city spaces, such as sensors, devices, 

vehicles, buildings, and humans. ­ese sources are the aim of 
addressing the major issues cities face (e.g., air pollution, 
increased energy consumption, and tra�c congestion) [3]. 
­ere are three main challenges in city computing: city sensing 
and data acquisition, computing with heterogeneous data, and 
hybrid systems combining the physical and virtual worlds.

Recently, many frameworks have been proposed in 
di�erent dimensions of smart cities including transportation 
[4], environment [5], energy [6], social [7], economy [8], and 
public safety and security [9]. Most of these frameworks did 
not include semantic interpretation of the results and focused 
on speci�c domains. In general, the data generated from smart 
cities are usually not easy to understand by humans because 
it has the challenges related to big data. ­e concept of Big 
Data is clari�ed by considering �ve Vs [10]:

(1) Volume: refers to the size of data that has been gener-
ated by all di�erent sources.

(2) Velocity: refers to the speed of data changes.
(3) Variety: refers to the di�erent types of data being 

generated.
(4) Veracity: refers to the quality of the data.
(5) Value: refers to the value of the data.

­erefore, there are necessary needs to build a general frame-
work to overcome the challenges posed by data of the city.
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To achieve the research objectives, this paper is structured 
as follows: Section 2 reviews background and previous related 
works. Section 3 illuminates the proposed framework archi-
tecture. Section 4 describes the implementation of our pro-
posed framework SSWF. Section 5 provides a case study of the 
SSWF to analyze air pollution and weather on migratory birds’ 
path. Section 6 explains the result of applying the proposed 
framework. Section 7 discusses the signi�cant contribution 
and limitations of this research and concludes the paper.

2. Related Work

Di�erent cities have already built IoT infrastructures and var-
ious sensor devices to collect the data needed. A huge number 
of research projects concentrates on the collection and econ-
omy of IoT data generated from smart cities.

Many Smart City frameworks can classify into three dif-
ferent classes [11]:

(1) Models: abstract frameworks for Smart City.
(2) Speci�c purpose model: framework and applications 

related to one domain of the Smart City.
(3) Multidomain models: framework and applications 

that describe the Smart City as a complex system and 
consider more than one domain.

Smart City frameworks have a major focus on existing Smart 
City platforms. ­e existing works are mainly in four key areas: 

(1) data acquisition, (2) semantic interoperability, (3) data 
analysis, and (4) Smart City application development support 
[12].

We divided the framework in the Smart City into four 
categories, according to technologies used. Almost all of the 
frameworks use at least one or more of the following technol-
ogies (Big Data, Cloud Computing, Internet of ­ings, and 
Semantic Technology). Figure 1 presents technologies and 
their functions.

Table 1 presents a comparative study among Smart City 
frameworks and the technologies used. Table 1 explores also 
security and API services. SCDAP “Smart City Data Analytics 
Panel” is a big data analytics framework for Smart City appli-
cations, the main feature of this architecture is limited to 
Apache Hadoop suite as an underlying data storage and man-
agement layer [13]. ­e “CityPulse” framework supports 
Smart City service creation by means of a distributed system 
for semantic discovery, data analytics, and interpretation of 
large-scale near the real-time Internet of ­ings data and 
social media data streams [12]. Zhang et al. [14] presented a 
semantic framework that integrates the IoT with machine 
learning for smart cities. ­is framework retrieves and models 
urban data for certain kinds of IoT applications based on 
semantic and machine-learning technologies. It is used to 
detect pollution from vehicles and to detect tra�c patterns. 
Spit�re and iCore are frameworks that use semantic technol-
ogies for IoT data collection [15]. CITIESData is a Smart City 
data management framework that includes data collection, 
cleansing, and publishing [16]. It divides Smart City data 
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Figure 1: Smart City platforms technologies.

Table 1: A comparative study among Smart City frameworks and its technologies.

Smart City 
framework Type

Technologies
IoT Big data Semantic Cloud computing API\services Security

SCDAP F √ √
CityPulse F √ √
Zhang et al. F √ √ √
Spit�re F √ √
iCore F √ √
CITIESData F √ √
Krishna F √ √
Simon F √ √ √
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insensitive, quasi-sensitive, and open/public levels. ­en it 
suggests di�erent strategies to process and publish the data 
within these categories. Mohbey [17] presented a Smart City 
framework using di�erent technologies of big data and the 
Internet of ­ings. It focuses on problems related to real-time 
decisions for a smart city. Bibri [18] proposed a framework 
for a Smart City based on big data and sensor data.

­ere are points still to be covered. On the one hand, 
Hybrid technologies such as Big Data, Semantic technology, 
cloud computing, the Internet of ­ings, and Data Vitalization 
are not integrated to support a more e�cient smart city frame-
work. On the other hand, big data frameworks did not support 
meaning to add value to the data. Semantic frameworks are 
so slow for data retrieving and processing. Security issues still 
prevail in previous frameworks.

3. The Proposed Semantic Smart World 
Framework (SSWF) Architecture

­e world contains the set of Data Centres for Smart Cities 
which specializes in collecting and measuring big data for 
natural phenomena like bird migration, environmental pol-
lution, and Climate Change. Many problems are there in these 
data centres; they are not connected together; they serve Smart 
Cities in the world; and, there is no open access to the data.

SSWF is a general semantic big data framework that com-
bines semantic web and big data technologies to connect, 
predict, and discover the knowledge of world big data. ­at is 
without boundaries between cities.

Figure 2 shows the concept of semantic smart world 
framework.

Big data technologies are required for most data-related 
activities, such as storing, processing, analyzing, and sharing, 
while Semantic technologies are required for meaning-related 
activities, such as event detection, reasoning, and decision 
support. ­us, this research is aimed to build and develop a 
general framework for smart cities that utilizes a combination 
of data-related and meaning-related activities.

As shown in Figure 3, ­e Smart Cities’ infrastructure 
generates the heterogeneous big data. ­e architecture of 
SSWF consists of the following phases over Smart Cities 
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Figure 2: ­e concept of SSWF.
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(Group BY, HAVING, ORDER BY, LIMIT, OFFSET, and 
VALUES).

We con�gure general dynamic SPARQL query in Data 
visualization phase.

3.5. Data Analytics. ­e processed data are further analyzed 
in this phase to utilize events and help decision-makers to take 
the correct decision. ­is phase supports semantic �ltering, 
semantic monitoring, event detection, and knowledge 
discovery. Semantic �ltering is s �ltering based on expressions 
in the form of a conjunction of description logics atoms 
enriched with OWL data types and SWRL (Semantic Web Rule 
Language) built-ins. We build �lter expression in the universal 
semantic data model. ­en the �lter expression is translated 
into a SPARQL query. Semantic monitoring allows event 
types taxonomy and event parameters to de�ne in Ontology. 
We de�ne them in the universal semantic data model. Event 
detection translates into �nding a set of event types for which 
a given event occurrence belongs to their domains.

Knowledge discovery (or data mining techniques) must be 
adapted to be suitable for Big Data analysis. In this phase, we 
handled the Gamma Association Coe�cient to be suitable to use.

­e gamma association coe�cient (also called the gamma 
statistic) shows us how closely sets of items in a series of data 
or transactions “match”. Gamma can be calculated for ordi-
nal (ordered) variables that are continuous variables (like 
temperature or humidity) or discrete variables (like “hot” 
or “cold”). ­e gamma estimator is based on the number of 
observations that are concordant and discordant. It ignores 
tied pairs (i.e., pairs of observations having the same � val-
ues or the same � values). ­e Gamma coe�cient ranges 
between −1 and 1. Value 1 means perfect positive associa-
tion, while value −1 means perfect inverse association. If 
there is no association between the variables, the value will 
be zero [19].

We assume that cross tabulation or 2 × 2 cross table for-
mula is shown as Equation (1).

where � is the frequency of variable �− against �−, � is the fre-
quency of variable �+ against �−, � is the frequency of variable 
�− against �+, � is the frequency of variable �+ against �+.

Equation (2) shows Gamma association coe�cient γ

(1)
X– X+ Total

Y– a b e
Y+ c d f

h n

(2)� = (ad − bc)(ad + bc) .

infrastructure: (1) Big data storage; (2) universal knowledge 
base; (3) parallel distributed big data processing; (4) Semantic 
big data dynamic query (5); Data analytics; and (6) Data 
visualization.

In this section; we describe each component in SSWF 
architecture. ­e Smart Cities’ infrastructure generates heter-
ogeneous big data. ­e main challenge is the ability to collect 
and push timely data of city events from a huge number of 
heterogeneous sources such as sensors, servers, devices, vehi-
cles, buildings, and human activities, and deal with both his-
torical and real-time big data.

3.1. Big Data Storage. ­is phase is responsible for storing 
the data collected from the Smart cities. It used big data 
storage systems like Hadoop Distributed �le system (HDFS) 
and NoSQL Database. Moreover, this component should be 
capable of performing useful preprocessing tasks, such as data 
�ltering, normalization, and transformation.

3.2. Universal Knowledge Base. In this phase, we build a 
universal semantic data model as Ontology-based. ­is model 
should automatically classify the data, associate relationships, 
and �nd new relationships. ­is is done by using the OWL 
“Web Ontology Language” and Ontology re-engineering 
method as Merging.

3.3. Parallel and Distributed Big Data Processing. ­is phase is 
responsible for the processing of smart city data in distributed 
cluster nodes. ­ere are two types of data processing: Stream 
processing, to perform real-time data ¿ow; and Batch 
processing, to perform large historical data-sets. We should 
choose suitable distributed big data processing frameworks.

3.4. Semantic Big Data Dynamic Query. ­is phase integrates 
semantic dynamic query with big data distributed processing. 
We connect NoSQL with the universal knowledge base. 
Sematic dynamic queries can run directly on data stored 
in HDFS/NoSQL without requiring any data movement or 
transformation. ­ere are two main steps for run query: (1) 
­e RDF Loader converts an RDF dataset into the data layout 
using MapReduce. (2) ­e Query Compiler rewrites a given 
Sematic dynamic into the SQL on big data ecosystem based on 
the algebraic representation of SPARQL expressions.

General Dynamic SPARQL query as shown in Figure 4. 
­e query consists of three parts: the SELECT clause identi�es 
the variables (�1, �2, . . . , �i) to appear in the query results, ­e 
WHERE clause provides the basic graph pattern (�, �, �) to 
match against the data graph, and �lter which contains asso-
ciation rule or condition. ­e query can include modi�ers like 

SELECT ?x1,?x2,…..?xi
WHERE { 

X ?x1 . Y ?x2 . Z?x3 .

FILTER( condition) 

MODIFIERS
}

Figure 4: General dynamic query.
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We can simplify the variables in 2 × 2 cross table to be
� = �ij it is number of records which satisfy �i & �j classes 

conditions,
� = ∑��=1 �ik = �1k − �ij = � − � where �1k total number of 

records which satisfy �j � ̸= �,
� = ∑��=1 �rj = �j1 − �ij = � − � where �j1 total number of 

records which satisfy �i � ̸= �.
� = ∑�,��,�=1 �rk = �mk − ∑

�
�=1�rj = �mk − (�j1 − �ij) = (� − �1k)

−(�j1 − �ij) �, � ̸= �, �.
­en Equation (5) shows the general 2 × 2 cross table will

­en Equation (6) shows the simplest form of � to be suitable 
for big data

­e simpli�cation in this way required just count (�, �, �, �)
and this calculation must also count in any association rule 
discovery to calculate support and con�dence.

3.6. Data Visualization. ­e previous component produces 
output as a series of values. To represent these values, it will 
be necessary to use visualization techniques. In this type of 

(4)

Xi
+ …….. Xi

–

Y j
+ aij t1k

. .

.
Y j

– tmk

T

m
r∑ =1 rjα

∑ =1 ik
n
k α

∑ rk
n,m
r,k = 1 α

tj1 tjn

(5)
X Not X Total

Y a e–a e
Not Y –a (T– )–(e–a) T–e

T– T

(6)� = [�((� − �) − (� − �)) − (� − �)(� − �)][�((� − �) − (� − �)) + (� − �)(� − �)] .

Notice that � compares the product of diagonal cells (ad) to a 
product of the o�-diagonal cells (bc). ­e denominator is an 
adjustment that ensures that � is always between +1 and −1.

We Generalized 2 × 2 tables for any category attributes in 
datasets in Equation (3):

Let � = {�1, . . . , ��} and � = {�1, . . . , ��} then the cross 
table will be

­en for each two categories (�i, ��), we have 2 × 2 cross table 
in Equation (4).

(3)

X1 …….. Xn
Y1 a11 a1n ∑ =1 1n

. .

. .
Ym

m
r

m
r

n
k

am1 amn ∑ mn

∑ =1 r1 ∑ =1 Tα rn

α

α

α

SELECT avg( ?O3) ?long ?lat WHERE {
?obs schema:O3 ?O3 . obs schema:year ?year . ?year property:yearNum ?yn .
?station property:longitudeDegree ?long . ?station property:latitudeDegree ?lat .
?stationObj schema:inCity ?cityObj .?cityObj property:city ?city .
FILTER ( ?yn = 2010 && ?city = "LONDON"^^xsd:string) } GROUP BY ?long ?lat

Create Table result As Select avg(O3),Long,Lat
FROM ProbTable
WHERE yn  = 2010 and city = “london”
GROUP BY long,lat

SP
A

RQ
L

A
lg

eb
ra

 tr
ee

SQ
L

?long ?lat
?yn = 2010

avg( ?O3) ?long ?lat

GROUP BY
Filter

Select

?city = "LONDON"^^xsd:string

Figure 5: Dynamic query ¿ow.

Table 2:  ­e so¨ware packages used in the framework and its 
function.

So¨ware Function
Big queue [22] Data transformation
HDFS [23], HBASE [24] Data storage
Spark [25] and Hadoop [23] Data processing
Spark [25] Stream processing
Hadoop YARN [23] Clustering management
REST API’s Data access
Spark MLib [25] Machine learning
SPARQL [26] Semantics logic
OWL [27] and RDF [28] 
Protégé Knowledgebase

Sempala Alexander [20] Interactive SPARQL query 
processing on Hadoop

Java [29] Dashboard
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particular kinds of knowledge. Users can choose or maybe 
data-driven. Visualization techniques can be classi�ed into 
(graphical, tabular, or using color only). Users can access the 

technique, we focus on how to make the representation of 
the knowledge which is minded more understandable. Some 
representation forms may be better suited than others for 

Dashboard

build and request

Dynamic SPARQL Convert SPARQL

To spark SQL
using sempala

knowledge
base Spark HBASE HDFS

Return

Return

Batch processing
Historical

data

Stream processing

Push data Push data using big queue

Figure 6: Data sequence diagram.

Table 3: Hbase table structure and design.

Cf: goe CF: date time Cf: airquality
Longitude Latitude Day Month Year Hour CO O3 NO2 SO2 PM10 PM2.5
CF: weather
Temperature Humidity Rainfall Precipitation Wind Solar-irradiance

Table 4: ­e air quality index.

Band Index
Nitrogen dioxide 

1-hour mean (µg m−3)
Ozone 8-hourly mean 

(µg m−3)

PM10 particles 
24-hour mean  

(µg m−3)

PM2.5 particles 
24-hour mean  

(µg m−3)

Sulphur dioxide 
15-minute mean  

(µg m−3)
Min Max Min Max Min Max Min Max Min Max

Low
1 0 67 0 33 0 16 0 11 0 88
2 68 134 34 66 17 33 12 23 89 177
3 135 200 67 100 34 50 24 35 178 266

Moderate
4 201 267 101 120 51 58 36 41 267 354
5 268 334 121 140 59 66 42 47 355 443
6 335 400 141 160 67 75 48 53 444 532

High
7 401 467 161 187 76 83 54 58 533 710
8 468 534 188 213 84 91 59 64 711 887
9 535 600 214 240 92 100 65 70 888 1064

Very high 10 601 241 101 71 1065
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Figure 8: Dashboard for SSWF.
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2010, the corresponding algebra tree is illustrated in (2) and 
the Spark SQL query is given in (3).

In the data processing phase; Alkatheri [21] built a com-
parative study among big data frameworks. In comparison 
with Spark, Apache Storm, Flink and Apache Hadoop frame-
works for nonreal-time data, this comparison recognized 
Spark as a winner across various key performance indicators 
(KPI), while, for stream processing, Flink was the best. ­ese 
KPIs are processing time, CPU consumption, Latency, 
Execution time, task performance, and Scalability. We com-
pare Spark and Flink frameworks on high-performance com-
puting (HPC). We found that the Spark Framework is the best 
framework against the pervious KPIs.

Spark is very fast and easy to collect a huge amount of data 
processing. Apache Spark is a distributed processing frame-
work that works on the in-memory system. It is known for its 
high performance. It is easy to use and has ¿exibility with 
e�ciency in handling huge data. Also, it supports application 
development in languages like Python and Java using Hadoop 
based storage system.

Table 2 presents the so¨ware packages used in the pro-
posed framework SSWF and its functions.

A corresponding sequence diagram illustrating this data 
¿ow process is shown in Figure 6.

5. Case Study of the SSWF to Analysis Air 
Pollution and Weather on Migratory Birds’ 
Path

World health organization (WHO) shows that 9 out of 10 peo-
ple breathe air containing high levels of pollutants. It estimates 

proposed framework by a set of data visualization components 
like a dashboard, mobile application and APL’s.

4. Implementation of the Proposed Framework 
SSWF

In this section, we illuminate hardware and so¨ware packages 
used in the proposed framework SSWF and explain data ¿ow 
for the proposed framework SSWF.

For Implementing SSWF, we need to use suitable so¨ware 
in each layer. Where we use the HPC System of Bibliotheca 
Alexandrina which has a SUN cluster of peak performance of 
11.8 T¿ops, 130 eight-core compute nodes, 2 quad-core sock-
ets per node, each is Intel Quad Xeon E5440 @ 2.83 GHz, 8 GB 
memory per node, Total memory 1.05 Tera Bytes, 36 TB shared 
scratch, Node-node interconnect, Ethernet & 4x SDR 
In�niband network for MPI, 4x SDR In�niband network for 
I/O to the global Lustre �lesystems.

We develop a semantic dashboard using java JDK, then 
build a universal knowledge base using Protégé. ­e data are 
pushed from di�erent data sources to NoSQL storage by Big 
Queue tool. Depending on the size of the data, the SSWF 
stored data in HDFS or Hbase. ­e SSWF processed data as 
batch processing in case of historical data or streaming pro-
cessing in case of real-time data. ­e SSWF used Sempala 
Alexander [20] as interactive SPARQL query processing on 
SQL on Hadoop. ­e SSWF generates a dynamic SPARQL 
query over the universal semantic data model of the city.

A complete example of how a dynamic SPARQL query is 
translated to Spark SQL is illustrated in Figure 5, (1) the 
SPARQL query asks for an average of Q3 in “London” during 

SELECT ?O3 ?NO2 ?CO ?PM25 ?PM10 ?SO2 ?Temp ?Hum ?Wind ?Rainfall ?pre

?solar WHERE { 

?obs schema:O3 ?O3.

?obs schema:NO2 ?NO2.

?obs schema:CO ?CO.

?obs schema:PM2.5 ?PM25.

?obs schema:PM10 ?PM10.

?obs schema:SO2 ?SO2.

?obs schema:Temperature ?Temp.

?obs schema:Humidity ?Hum.

?obs schema:Wind ?Wind.

?obs schema:Rainfall ?Rainfall. 

?obs schema:precipitation ?pre. 

?obs schema:Solarirradiance  ?solar. 

?obs schema:year ?year.

?year property:yearNum ?yn.

?obs schema:sensor ?sensor.

FILTER( ?yn >= 1970 && ?yn <= 2010)

} 

Figure 9: Dynamic query to retrieve all air quality and weather parameters �ltered in di�erent period of times.
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that around 7 million people die every year from exposure to 
polluted air [30]. Most organizations deny access to their data 
by external researches due to privacy issues.

We study air quality [30] and weather forecasting [31] 
monitoring data for 40 European countries from 1969 to 
2012. ­e size of the data per year is 1.5 GB. Multiple weather 
factors (temperature, wind speed, humidity, rainfall, etc,) 
are taken into consideration based on hourly monitoring. 
Air pollutants included particulate matter with an aerody-
namic diameter ≤10 µm (PM10), PM2.5, nitrogen dioxide 
(NO2), sulfur dioxide (SO2), carbon monoxide (CO), and 
Ozone (O3). ­e European Environment Agency (EEA) 
launched the European Air Quality Index (AQI) to check 
the current air quality across Europe’s cities and regions. We 
compare our results with the European Air Quality Index 
(AQI) (http://airindex.eea.europa.eu/) to check our 
predictions.

Table 5:  ­e comparison between time processing of the data 
(seconds) and a di�erent period of times.

Time
Original data Proposed framework

Time of processing 
(seconds)

Time of processing 
(seconds)

1 year 34.3 14.1
10 years 350.1 30.5
20 years 500.4 45.3
30 years 800.6 62.4
40 years 1500.50 75.2
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Figure 10:  Bar chart for time processing for original data and 
proposed framework in di�erent period of times.

Table 6: Gamma association coe�cient between the daily average 
of humidity and PM2.5.

No of event Humidity PM25 � (Gamma association 
coe�cient)

278 Low Low 76.16%
62 Not low Low 16.98%

SELECT 
?station avg(?pm10)?long ?lat WHERE {
?obs schema:PM10 ?pm10.
?obs schema:station ?station.
?station property:longitudeDegree ?long.
?station property:latitudeDegree ?lat.
?stationObj schema:inCity ?cityObj.
?obs schema:year ?year.
?year property:yearNum ?yn.
?cityObj property:city ?city.
?obs schema:sensor ?sensor.
FILTER(?city = "LONDON"^^xsd:string && ?yn >= 2000 && ?yn <= 2010) 

} group by ?station ?long ?lat

Figure 11: ­e monthly average air quality index for PM10 over London from 2008 to 2012.
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Figure 12: ­e monthly average air quality index for PM10 over 
London from 2008 to 2012.
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­e location and time components use the standard GEO 
W3C Ontology (http://www.w3.org/2003/01/geo/). We de�ne 
a set of association rules for air quality index and weather. 
Table 4 shows the air quality index with air pollution param-
eters value.

Figure 7 shows a general picture of the ontology of the 
Smart City environmental structure. SCEO contains set of 
classes like (County, City, Station, Device, Sensor, Air pollu-
tion, Weather, Water, Air Quality, Climate Change). It is also 
contain set of subclasses like air pollution has (CO, O3, NO2, 
SO2, PM2.5.PM10) and weather has (temperature, wind, 
humidity, rainfall, etc,).

5.3. Data Processing. In this phase, Dynamic SPARQL query 
can be processed over large distributed datasets in memory 
e�ciently on top of the existing cluster HPC platform without 
data preparation overhead. Dynamic SPARQL query can be 
run over Sempala which converts SPARQL query to algebraic 
representation and then to Spark SQL.

5.4. Data Visualization. Geographical Dashboard has 
been implemented. Apache server tomcat was used to host 
Dashboard. Figure 8 shows the dashboard for the proposed 
framework—an easy to con�gure Dynamic SPARQL query 
using dashboard controls. ­e result can be �ltered by a range 
or the number of output values. ­e dashboard provides an 
Animated Marker Clustering.

6. Analysis of Results

For evaluation purposes, we measure the time of processing a 
dynamic query to retrieve all air quality and weather parameters 
�ltered in di�erent periods of times as shown in Figure 9. Table 5 
shows the comparison between normal RDF and the proposed 
framework in the processing time of query code 2. Figure 10 
shows the bar chart for time processing (seconds) for original 
data and the proposed framework in di�erent periods of time.

We measure monthly average Air quality index for PM10 
over London from 2008 to 2012 https://data.london.gov.uk/ 
and our proposed framework as shown in Figure 11.

Figure 12 shows the comparison between the monthly 
average Air quality indexes for PM10 over London from 2008 
to 2012 and our proposed framework. ­e matching ratio in 
the air quality index between the framework calculation and 
the real data is 98%.

Now, we can discover knowledge by applying Gamma 
association coe�cient on any two classes.

We build association rules discovery between PM2.5 and 
temperature and humidity during 2011 over London.

Where � is the number of PM2.5 in each rule. i.e., satisfy 
the two classes at the same time.

We discover knowledge by applying the Gamma associa-
tion coe�cient on certain classes in the universal knowledge 
base. So, we build association rules discovery between PM2.5, 
temperature, and humidity during 2011 over London.

We predict the value of any attribute in the universal knowl-
edge base. ­e main challenge is the missing data in some 
places in the migratory birds’ path. So, the SSWF search for the 
nearest area has data and predicts the missing data. In this case; 
we predict the annual average of NO2 over Egypt in 2011.

Now, we apply the SSWF in the following sections.

5.1. Data Storage. At this stage, data can be collected from 
di�erent sources. BigQueue pushes the data from all sources 
to the NoSQL storage and HDFS. It can open one connection 
to the database and synchronize others. In order to speed up 
the query location added in Geo column family, Date Time 
information domain is added in DateTime column family, Air 
pollution information domain is added in Air quality column 
family, and weather information domain is added in weather 
column family, respectively, with the logical view of the entire 
table shown in Table 3.

5.2. Universal Knowledge Base. We create a common 
knowledge base Smart City Environmental Ontology (SCEO) 
that can deal with static, semi-static and real-time data. SCEO 
can be used to make queries for predictions, suggestions, and 
deductions.

SCEO is a universal Ontology, which merges more than 
one ontology. ­is merge will extend the knowledge base. ­is 
merge is necessary for knowledge transfer among di�erent 
knowledge bases. ­e common between ontologies is the loca-
tion and time components.

Events(?e) ^ E_PM25(?e,?m) ^ humidity  (?ws)^ swrlb:less�an(?m, 70) ^ 
swrlb:greater�an(?m, 10) ^ swrlb:less�an(?ws, 20.0) –> swrlq:select(?e) ^ 
swrlq:orderBy(?m)

Figure 13: SWRL to count “�”.
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Figure 14: Curve relation among humidity, temperature, and PM2.5 
during 2011 over London.
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