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Inspired by the visual properties of the human eyes, the depth information of visual attention is integrated into the saliency
detection to effectively solve problems such as low accuracy and poor stability under similar or complex background
interference. Firstly, the improved SLIC algorithm was used to segment and cluster the RGBD image. Secondly, the depth
saliency of the image region was obtained according to the anisotropic center-surround difference method. Then, the global
feature saliency of RGB image was calculated according to the colour perception rule of human vision. The obtained
multichannel saliency maps were weighted and fused based on information entropy to highlighting the target area and get the
final detection results. The proposed method works within a complexity of O(N), and the experimental results show that our
algorithm based on visual bionics effectively suppress the interference of similar or complex background and has high accuracy
and stability.

1. Introduction

Saliency detection is an important research content in com-
puter vision, which refers to the process of simulating human
visual attention mechanism to accurately and quickly detect
the most interesting regions in images. Borji et al. defined
that saliency visually described the prominent target or area
in the scene relative to its neighbouring area [1]. The human
visual attention mechanism prioritizes a few significant areas
or objectives, while ignoring or discarding others that are not,
which can allocate computing resources selectively and
greatly improve the efficiency of visual information process-
ing. Therefore, the saliency computing model based on visual
attention mechanism has been widely studied. When pro-
cessing the input image or video, the computer can judge
the importance of its visual information by detecting the
saliency area. It has been widely applied in object detection
and identification [2], image retrieval [3], video quality
assessment [4], video compression [5], image cropping [6],
and other fields.

The RGB image saliency detection model based on visual
attention mechanism uses low-level feature contrast to calcu-
late saliency [7, 8]. Typical of them are global feature com-
parison calculation model [9], local feature comparison

calculation model [10], and combination of global and local
feature comparison model [11]. In order to improve the
accuracy of detection, the saliency detection model was pro-
posed based on prior knowledge [12]. Typical of them are
position prior [13], background prior [14, 15], colour prior
[16], shape prior [17], and boundary prior [18, 19].

However, most 2D image saliency detection models
based on human visual attention mechanism ignore the fact
that human visual attention mechanism is based on 3D
scene. It shows that depth provides extra important informa-
tion of saliency detection for RGB image. Desingh et al. dis-
cussed 3D saliency detection methods based on depth
appearance, depth-induced blur, and centre-bias [20]. Niu
et al. conducted depth saliency detection based on parallax
contrast and professional knowledge in vertical photography
[21]. Further, Ju et al. proposed a depth saliency detection
model based on depth image anisotropic center-surround
difference [22]. Ren et al. [23], respectively, proposed the
saliency detection of RGB-D images against a complex back-
ground by combining the prior knowledge of depth, indicat-
ing the validity of depth information in 3D saliency
detection. However, there are two challenges in the process
of saliency detection of RGB-D images. The first is how to
calculate the saliency of depth images under similar or
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complex background interference, and the second is how to
combine the saliency map of depth image and RGB image
to obtain the final result with a good performance. In this
paper, we proposed a multichannel saliency detection
method based on RGBD images, which has the following
contributions:

(1) On the basis of SLIC algorithm, colour, texture, and
depth information are used to measure the distance
of superpixel segmentation

(2) Based on the perception rule of human vision, we
introduced the depth information and global infor-
mation of RGB image as two feature channels for
saliency computing

(3) The weighted features of depth saliency and colour
saliency were fused by information entropy, and
experiment shows that the algorithm has a good per-
formance in case of background interference

2. Saliency Detection

The algorithm framework of this paper is shown in Figure 1.
Combining the depth map with the RGB map to carry out
image preprocessing and colour, texture, and depth informa-
tion are introduced as the basis of superpixel segmentation.
Then, the colour and depth information were calculated as

two feature channels of saliency map. As is shown in
Figure 2, the depth saliency was obtained by the anisotropic
center-surround difference (ACSD) method, and the global
saliency of RGB image was calculated by global contrast
method based on HSV space. Finally, information entropy
is used to calculate the weights of two channels, respectively,
and get the final fused saliency map.

3. Image Preprocessing

The human visual observation system takes the image region
as the basic unit, and the saliency detection based on the
region conforms to the visual characteristics of the human
eyes. As a construction method of pixel region, superpixel
technology has been widely used in computer vision field.
Superpixel can quickly segment the image into subregions
with certain semantics, which is conducive to the extraction
of local features and the expression of structural information
[24]. SLIC algorithm has obtained a good balance in the two
aspects of edge fitting degree and compactness, which has an
excellent comprehensive performance. When the SLIC is
used to segment the left image, the obtained boundary is
not accurate because of ignoring the mutual constraint rela-
tionship between the 2D and depth information. Therefore,
colour, texture, and depth information are used to measure
the distance of superpixel segmentation in this paper.
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Figure 1: Our framework of saliency detection.
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Figure 2: Example of the ACSD operator in a region.
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Converting the left image to the CIE Lab colour space and
dividing the image into k superpixels. Here, each pixel has a
unique identifier i. Extract the follow 7d characteristics of
each superpixel region as measurement property. It can be
expressed:

Sp¯i = li, ai, bi, Cconi, Ccori, Ei, dif g i = 1, 2, 3,⋯, k, ð1Þ

where li, ai, and bi are the mean value of L, a, and b colour
components of each superpixel region; Cconi, Ccori, and Ei
are the mean value of contrast, cross-correlation, and energy
mean of gray level cooccurrence matrix of each superpixel
region; and di is the depth value of each superpixel region.
Then, we can describe the adjacent superpixel pair as Sp¯ij:

Sp¯ij = Sp¯i, Sp¯j
� �� �

i ∈ 1, k½ �, j ∈ 1, k½ �, i ≠ j, ð2Þ

where Sp¯ij superpixel pair with i and j as identifier, k is the
number of superpixels of the image, and SP¯i and Sp¯j are
the 7 d characteristics of the adjacent superpixel pair. The
number of adjacent superpixel pairs in each image is deter-
mined by SLIC superpixel segmentation.

Using colour, texture, and depth features to calculate the
difference between all adjacent superpixel pairs Sp¯ij. dlab,
dglcm, and ddepth are defined to describe the measurement of
colour, texture and depth characters:

dlab =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
li − l j
� �2 + ai − aj

� �2 + bi − bj
� �2,q

dglcm =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cconi − Cconj
� �2 + Ccori − Ccorj

� �2 + Ei − Ej

� �2,q
ddepth =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di − dj

� �2:q
ð3Þ

Then, the distance measurement of superpixel segmenta-
tion Dij is

Dij = ω1∙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε + d2lab

3

s
+ ω2∙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε + d2glcm

3

s
+ ω3∙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε + d2depth

q
, ð4Þ

where ε = 10−4. It is used to ensure the validity of the value.
ω1, ω2, are ω3 are the weight of colour, texture, and depth.

In the image, the greater the discreteness of a feature data
set is, it means that the more influence this feature has on the
image. Mean variance can effectively represent the degree of
difference between data. Therefore, the global mean variance
of colour, texture, and depth is used as the weight values of
the three features ω1, ω2, and ω3.

If the difference between adjacent superpixels is less than
a certain threshold th1, the adjacent superpixel pair will be
merged.

th1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1∙ �l + �a + �b

� �
3

s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2∙ Ccon + Ccor + �E

� �
3

s
+

ffiffiffiffiffiffiffiffiffiffi
ω3∙�d

q
,

ð5Þ

where�l, �a, and �b are the mean value of L, a, and b colour com-
ponents of the image; Ccon, Ccor, and �E are the mean value of
contrast, cross-correlation, and energy mean of gray level
cooccurrence matrix of the image; and �d is the depth value
of the image.

Finding all similar adjacent superpixel pairs and taking
the upper left superpixel of the image as the starting point
of clustering. The output after clustering contains n regions
Ri, 1 ≤ i ≤ n.

4. Depth Saliency Map

For each superpixel, the anisotropic center-surround differ-
ence (ACSD) value is calculated, and the value of center
superpixel is assigned to each pixel within the region Ri. Per-
forming an anisotropic scan along multiple directions, in
each scanline, assuming the pixel with the minimum depth
value as background and calculate the difference between
the center pixel and background. L is the maximum scan
length for each scanline. The typical value of L is a third of
the diagonal length.

The anisotropic center-surround difference (ACSD) is
summed over eight scanning directions 0°, 45°, 90°, 135°,
180°, 225°, 270°, and 315°. The mathematical description of
anisotropic center-surround difference (ACSD) measure is

Smd x, yð Þ = d x, yð Þ −min dmð Þ, n ∈ 1, L½ �,

Sd x, yð Þ = 〠
8

m=1
Smd ,

ð6Þ

where Smdepth indicates the ACSD value of pixel ðx, yÞ along
the scanline m. dðx, yÞ is the depth value of pixel ðx, yÞ. n is
the index of the pixels along the scan path m. min ðdmÞ is
the minimum depth value along the scanline m. Sdðx, yÞ is
the ACSD value of pixel ðx, yÞ which sums the center-
surround difference values in eight directions.

5. Global Saliency Map of RGB Image

Colour histogram is used to regularize the colour of the
image to level 128 in order to reduce the computational
complexity and save the storage space. On the other hand,
the descending dimension algorithm for HSV colour space
is proposed. With the decrease of saturation, any colour in
HSV space can be described by the change of gray level.
The intensity value determines the specific gray level of
the conversion [25]. When the colour saturation is close
to zero, all pixels look similar regardless of hue. With
the increase of saturation, the pixels are distinguished by
hue value.

Compared with colour saturation, human vision is
more sensitive to hue and intensity. The pixels with lower
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colour saturation can be approximately represented by
intensity level, while the pixels with higher colour satura-
tion can be approximately represented by hue. Saturation
value is used to determine whether each pixel can be rep-
resented by hue or intensity value, which is more consis-
tent with the law of human visual perception. Saturation
threshold th2 is

th2 = 1 − 0:8 Iv x, yð Þ
255 , ð7Þ

where Ivðx, yÞ represents the V component value of a
pixel. When the saturation value Isðx, yÞ is greater than
th2, the pixel point is represented by the hue value Ivðx,
yÞ; when the saturation value is less than th2, the pixel
point is represented by the intensity value Ihðx, yÞ: The
saliency of each pixel is

Sc x, yð Þ =
�I − Iv x, yð Þ�� �� Is x, yð Þ ≤ th2
�I − Ih x, yð Þ�� �� Is x, yð Þ > th2

(
∀ x, yð Þ ∈ Ri, ð8Þ

where Isðx, yÞ is the saturation value of the pixel, Ihðx, yÞ
is the hue value of the pixel, Ivðx, yÞ is the intensity value
of the pixel, and �I is the mean value of all pixels.

6. Fusion of Saliency Map

When synthesizing the colour saliency map and the depth
saliency map, the information entropy is used to calculate
the weights of the channels.

The information entropy of colour saliency is

Hc Rð Þ = −〠
n

i=1
pc Rið Þ log pc Rið Þð Þ, ð9Þ

where pcðRiÞ is the ratio of the sum of Ri colour saliency
values to the whole image.

The information entropy of depth saliency is

Hd Rð Þ = −〠
n

i=1
pd Rið Þ log pd Rið Þð Þ, ð10Þ

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3: Saliency comparisons of different methods in terms of NJU400 dataset: (a) RGB image; (b) depth image; (c) ground truth; (d) GS;
(e) MC; (f) MR; (g) WCTR; (h) ACSD; (i) MSD.
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Figure 4: Continued.
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where pdðRiÞ is the ratio of the sum of Ri depth saliency
values of to the whole image.

The saliency map Sfuseðx, yÞ was obtained by fusing the
two channels:

Sfuse x, yð Þ = Hc Rð Þ
Hc Rð Þ +Hd Rð Þ Sc x, yð Þ

+ Hd Rð Þ
Hc Rð Þ +Hd Rð Þ Sd x, yð Þ∀ x, yð Þ ∈ Ri:

ð11Þ

7. Experimental Comparison

We show a few saliency maps generated by different algo-
rithms in Figure 3.

The precision-recall curve is evaluated from two aspects:
precision and recall. Precision refers to the ratio between the
number of correct saliency pixels and the whole number of
saliency pixels, which is used as the y-axis. Recall refers to
the ratio of the number of correct saliency pixels to the num-
ber of true pixels, which is used as the x-axis.

The algorithms are tested on NJU400 datasets. Two test
sets are divided from NJU400 according to the complexity
and the similarity of the background. Four volunteers are
invited to divide the raw datasets into the normal group (N
group) and the similar/complex background group (S/C
group). At last, 92 high quality and consistently labelled
images are selected into the S/C group, and the rest are
divided into the N group. The precision-recall curves of
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Figure 4: The precision-recall curves of different algorithms: (a) the precision-recall curves on the N group; (b) the precision-recall curves on
the S/C group; (c) the precision-recall curves on full datasets.

Table 1: The performance of different algorithms tested on three
groups.

Group Algorithms Precision

N group

GS 0.68

MC 0.79

MR 0.85

RBD 0.81

ACSD 0.84

MSD 0.82

S/C group

GS 0.49

MC 0.50

MR 0.63

RBD 0.56

ACSD 0.87

MSD 0.95

Full datasets

GS 0.64

MC 0.72

MR 0.80

RBD 0.76

ACSD 0.81

MSD 0.86
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different algorithms tested on the N group, S/C group, and
full datasets are given in Figure 4. The performance of differ-
ent algorithms tested on three groups is given in Table 1.

The proposed method works within a complexity of
O(N), and the evaluation on the results of these saliency
detection algorithms in the S/C group shows that our algo-
rithm has a better performance than other algorithms. In full
datasets, it also performs well. By selecting the salient subset
for further processing, the complexity of higher visual analy-
sis can be reduced significantly. Many applications benefit
from saliency analysis such as object segmentation, image
classification, and image/video retargeting.

8. Conclusions

A new framework based on visual bionics for saliency detec-
tion under similar or complex background interference is
proposed in this paper: First, we combine the depth map with
the RGBmap, and colour, texture, and depth information are
introduced as the basis of superpixel segmentation. Second,
the colour and depth information were calculated as two fea-
ture channels of saliency map. Finally, information entropy is
used to calculate the weights of two channels, respectively,
and get the final fused saliency map. The proposed method
works within a complexity of O(N), and the experimental
results show that our saliency detection framework greatly
reduces the error detection under similar and complex back-
ground and improves the overall saliency detection
performance.

Data Availability

The NJU400 datasets used to support the findings of this
study are included within the article.
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